基于Grasshopper优化算法的无线传感器网络节点定位

Q3 Chemistry
M. Santhosh, P. Sudhakar
{"title":"基于Grasshopper优化算法的无线传感器网络节点定位","authors":"M. Santhosh, P. Sudhakar","doi":"10.1166/JCTN.2020.9434","DOIUrl":null,"url":null,"abstract":"Node localization in wireless sensor network (WSN) becomes essential to calculate the coordinate points of the unknown nodes with the use of known or anchor nodes. The efficiency of the WSN has significant impact on localization accuracy. Node localization can be considered as an optimization\n problem and bioinspired algorithms finds useful to solve it. This paper introduces a novel Nelder Mead with Grasshopper Optimization Algorithm (NMGOA) for node localization in WSN. The Nelder-Mead simplex search method is employed to improve the effectiveness of GOA because of its capability\n of faster convergence. At the beginning, the nodes in WSN are arbitrarily placed in the target area and then nodes are initialized. Afterwards, the node executes the NMGOA technique for estimating the location of the unknown nodes and become localized nodes. In the subsequent round, the localized\n nodes will be included to the collection of anchor nodes to perform the localization process. The effectiveness of the NMGOA model is validated using a series of experiments and results indicated that the NMGOA model has achieved superior results over the compared methods.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"17 1","pages":"5409-5421"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nelder Mead with Grasshopper Optimization Algorithm for Node Localization in Wireless Sensor Networks\",\"authors\":\"M. Santhosh, P. Sudhakar\",\"doi\":\"10.1166/JCTN.2020.9434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Node localization in wireless sensor network (WSN) becomes essential to calculate the coordinate points of the unknown nodes with the use of known or anchor nodes. The efficiency of the WSN has significant impact on localization accuracy. Node localization can be considered as an optimization\\n problem and bioinspired algorithms finds useful to solve it. This paper introduces a novel Nelder Mead with Grasshopper Optimization Algorithm (NMGOA) for node localization in WSN. The Nelder-Mead simplex search method is employed to improve the effectiveness of GOA because of its capability\\n of faster convergence. At the beginning, the nodes in WSN are arbitrarily placed in the target area and then nodes are initialized. Afterwards, the node executes the NMGOA technique for estimating the location of the unknown nodes and become localized nodes. In the subsequent round, the localized\\n nodes will be included to the collection of anchor nodes to perform the localization process. The effectiveness of the NMGOA model is validated using a series of experiments and results indicated that the NMGOA model has achieved superior results over the compared methods.\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"17 1\",\"pages\":\"5409-5421\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2020.9434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2020.9434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(WSN)中的节点定位对于使用已知节点或锚节点来计算未知节点的坐标点至关重要。无线传感器网络的效率对定位精度有很大影响。节点定位可以看作是一个优化问题,生物启发算法对解决这个问题很有用。本文介绍了一种新的用于WSN节点定位的Nelder-Mead Grasshopper优化算法(NMGOA)。Nelder-Mead单纯形搜索方法由于具有较快的收敛性而被用来提高GOA的有效性。首先,将WSN中的节点任意放置在目标区域中,然后对节点进行初始化。然后,节点执行NMGOA技术来估计未知节点的位置,并成为本地化节点。在下一轮中,本地化的节点将被包括在锚节点的集合中,以执行本地化过程。通过一系列实验验证了NMGOA模型的有效性,结果表明,与比较方法相比,NMGOA模式取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nelder Mead with Grasshopper Optimization Algorithm for Node Localization in Wireless Sensor Networks
Node localization in wireless sensor network (WSN) becomes essential to calculate the coordinate points of the unknown nodes with the use of known or anchor nodes. The efficiency of the WSN has significant impact on localization accuracy. Node localization can be considered as an optimization problem and bioinspired algorithms finds useful to solve it. This paper introduces a novel Nelder Mead with Grasshopper Optimization Algorithm (NMGOA) for node localization in WSN. The Nelder-Mead simplex search method is employed to improve the effectiveness of GOA because of its capability of faster convergence. At the beginning, the nodes in WSN are arbitrarily placed in the target area and then nodes are initialized. Afterwards, the node executes the NMGOA technique for estimating the location of the unknown nodes and become localized nodes. In the subsequent round, the localized nodes will be included to the collection of anchor nodes to perform the localization process. The effectiveness of the NMGOA model is validated using a series of experiments and results indicated that the NMGOA model has achieved superior results over the compared methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Nanoscience
Journal of Computational and Theoretical Nanoscience 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.9 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信