函数最小化与R中的非线性最小二乘

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
J. Nash
{"title":"函数最小化与R中的非线性最小二乘","authors":"J. Nash","doi":"10.1002/wics.1580","DOIUrl":null,"url":null,"abstract":"This review will look at function minimization and nonlinear least squares, possibly bounds constrained, using R. These tools derive from the more general context of numerical optimization and mathematical programming. How R developers have tried to make the application of such tools easier for users not familiar with optimization is highlighted. Some limitations of methods and their implementations are mentioned to provide perspective.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function minimization and nonlinear least squares in R\",\"authors\":\"J. Nash\",\"doi\":\"10.1002/wics.1580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review will look at function minimization and nonlinear least squares, possibly bounds constrained, using R. These tools derive from the more general context of numerical optimization and mathematical programming. How R developers have tried to make the application of such tools easier for users not familiar with optimization is highlighted. Some limitations of methods and their implementations are mentioned to provide perspective.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1580\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1580","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述将使用R来研究函数最小化和非线性最小二乘,可能是边界约束的。这些工具源于数值优化和数学规划的更一般的背景。强调了R开发人员如何试图让不熟悉优化的用户更容易地应用这些工具。文中提到了方法及其实现的一些局限性,以提供透视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function minimization and nonlinear least squares in R
This review will look at function minimization and nonlinear least squares, possibly bounds constrained, using R. These tools derive from the more general context of numerical optimization and mathematical programming. How R developers have tried to make the application of such tools easier for users not familiar with optimization is highlighted. Some limitations of methods and their implementations are mentioned to provide perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信