复杂多流形高维数据的t-SNE

Q3 Computer Science
Rongzhen Bian, Jian Zhang, Liang Zhou, Peng Jiang, Baoquan Chen, Yunhai Wang
{"title":"复杂多流形高维数据的t-SNE","authors":"Rongzhen Bian, Jian Zhang, Liang Zhou, Peng Jiang, Baoquan Chen, Yunhai Wang","doi":"10.3724/sp.j.1089.2021.18806","DOIUrl":null,"url":null,"abstract":"To solve the problem that the t-SNE method cannot distinguish multiple manifolds that intersect each other well, a visual dimensionality reduction method is proposed. Based on the t-SNE method, Euclidean metric and local PCA are considered when calculating high-dimensional probability to distinguish different manifolds. Then the t-SNE gradient solution method can be directly used to get the dimensionality reduction result. Finally, three generated data and two real data are used to test proposed method, and quantitatively evaluate the discrimination of different manifolds and the degree of neighborhood preservation within the manifold in the dimensionality reduction results. These results show that proposed method is more useful when processing multi-manifold data, and can keep the neighborhood structure of each manifold well.","PeriodicalId":52442,"journal":{"name":"计算机辅助设计与图形学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"t-SNE for Complex Multi-Manifold High-Dimensional Data\",\"authors\":\"Rongzhen Bian, Jian Zhang, Liang Zhou, Peng Jiang, Baoquan Chen, Yunhai Wang\",\"doi\":\"10.3724/sp.j.1089.2021.18806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem that the t-SNE method cannot distinguish multiple manifolds that intersect each other well, a visual dimensionality reduction method is proposed. Based on the t-SNE method, Euclidean metric and local PCA are considered when calculating high-dimensional probability to distinguish different manifolds. Then the t-SNE gradient solution method can be directly used to get the dimensionality reduction result. Finally, three generated data and two real data are used to test proposed method, and quantitatively evaluate the discrimination of different manifolds and the degree of neighborhood preservation within the manifold in the dimensionality reduction results. These results show that proposed method is more useful when processing multi-manifold data, and can keep the neighborhood structure of each manifold well.\",\"PeriodicalId\":52442,\"journal\":{\"name\":\"计算机辅助设计与图形学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机辅助设计与图形学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1089.2021.18806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机辅助设计与图形学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1089.2021.18806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

针对t-SNE方法不能很好地区分多个相交流形的问题,提出了一种视觉降维方法。在t-SNE方法的基础上,在计算高维概率时考虑欧几里德度量和局部主成分分析来区分不同的流形。然后可以直接使用t-SNE梯度解法得到降维结果。最后,利用生成的3个数据和2个实际数据对所提出的方法进行了测试,并定量评价了降维结果中不同流形的区分程度和流形内邻域保持程度。结果表明,该方法在处理多流形数据时更有效,且能很好地保持各流形的邻域结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
t-SNE for Complex Multi-Manifold High-Dimensional Data
To solve the problem that the t-SNE method cannot distinguish multiple manifolds that intersect each other well, a visual dimensionality reduction method is proposed. Based on the t-SNE method, Euclidean metric and local PCA are considered when calculating high-dimensional probability to distinguish different manifolds. Then the t-SNE gradient solution method can be directly used to get the dimensionality reduction result. Finally, three generated data and two real data are used to test proposed method, and quantitatively evaluate the discrimination of different manifolds and the degree of neighborhood preservation within the manifold in the dimensionality reduction results. These results show that proposed method is more useful when processing multi-manifold data, and can keep the neighborhood structure of each manifold well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
计算机辅助设计与图形学学报
计算机辅助设计与图形学学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6833
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信