{"title":"STAR:一个基于缓存的空间数据流仓库系统","authors":"Zhida Chen, Gao Cong, Walid G. Aref","doi":"10.1145/3605944","DOIUrl":null,"url":null,"abstract":"The proliferation of mobile phones and location-based services has given rise to an explosive growth in spatial data. In order to enable spatial data analytics, spatial data needs to be streamed into a data stream warehouse system that can provide real-time analytical results over the most recent and historical spatial data in the warehouse. Existing data stream warehouse systems are not tailored for spatial data. In this paper, we introduce the STAR system. STAR is a distributed in-memory data stream warehouse system that provides low-latency and up-to-date analytical results over a fast-arriving spatial data stream. STAR supports both snapshot and continuous queries that are composed of aggregate functions and ad hoc query constraints over spatial, textual, and temporal data attributes. STAR implements a cache-based mechanism to facilitate the processing of snapshot queries that collectively utilizes the techniques of query-based caching (i.e., view materialization) and object-based caching. Moreover, to speed-up processing continuous queries, STAR proposes a novel index structure that achieves high efficiency in both object checking and result updating. Extensive experiments over real data sets demonstrate the superior performance of STAR over existing systems.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STAR: A Cache-based Stream Warehouse System for Spatial Data\",\"authors\":\"Zhida Chen, Gao Cong, Walid G. Aref\",\"doi\":\"10.1145/3605944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of mobile phones and location-based services has given rise to an explosive growth in spatial data. In order to enable spatial data analytics, spatial data needs to be streamed into a data stream warehouse system that can provide real-time analytical results over the most recent and historical spatial data in the warehouse. Existing data stream warehouse systems are not tailored for spatial data. In this paper, we introduce the STAR system. STAR is a distributed in-memory data stream warehouse system that provides low-latency and up-to-date analytical results over a fast-arriving spatial data stream. STAR supports both snapshot and continuous queries that are composed of aggregate functions and ad hoc query constraints over spatial, textual, and temporal data attributes. STAR implements a cache-based mechanism to facilitate the processing of snapshot queries that collectively utilizes the techniques of query-based caching (i.e., view materialization) and object-based caching. Moreover, to speed-up processing continuous queries, STAR proposes a novel index structure that achieves high efficiency in both object checking and result updating. Extensive experiments over real data sets demonstrate the superior performance of STAR over existing systems.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3605944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3605944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
STAR: A Cache-based Stream Warehouse System for Spatial Data
The proliferation of mobile phones and location-based services has given rise to an explosive growth in spatial data. In order to enable spatial data analytics, spatial data needs to be streamed into a data stream warehouse system that can provide real-time analytical results over the most recent and historical spatial data in the warehouse. Existing data stream warehouse systems are not tailored for spatial data. In this paper, we introduce the STAR system. STAR is a distributed in-memory data stream warehouse system that provides low-latency and up-to-date analytical results over a fast-arriving spatial data stream. STAR supports both snapshot and continuous queries that are composed of aggregate functions and ad hoc query constraints over spatial, textual, and temporal data attributes. STAR implements a cache-based mechanism to facilitate the processing of snapshot queries that collectively utilizes the techniques of query-based caching (i.e., view materialization) and object-based caching. Moreover, to speed-up processing continuous queries, STAR proposes a novel index structure that achieves high efficiency in both object checking and result updating. Extensive experiments over real data sets demonstrate the superior performance of STAR over existing systems.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.