{"title":"上秩的凸-共紧群","authors":"Olivier Guichard","doi":"10.24033/ast.1082","DOIUrl":null,"url":null,"abstract":"The convex-cocompact subgroups are central in hyperbolic geometry and more generally in negative curvature. Labourie introduced in 2005 the notion of 'Anosov' subgroup which proves progressively to be the right generalizations of convex-cocompact groups, especially after the works of Kapovich, Leeb and Porti. This expose will review different caracteriations of those groups, emphasizing the parallel (or difference) with the negative curvature, and will give their basic properties.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Groupes convexes-cocompacts en rang supérieur\",\"authors\":\"Olivier Guichard\",\"doi\":\"10.24033/ast.1082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convex-cocompact subgroups are central in hyperbolic geometry and more generally in negative curvature. Labourie introduced in 2005 the notion of 'Anosov' subgroup which proves progressively to be the right generalizations of convex-cocompact groups, especially after the works of Kapovich, Leeb and Porti. This expose will review different caracteriations of those groups, emphasizing the parallel (or difference) with the negative curvature, and will give their basic properties.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.1082\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The convex-cocompact subgroups are central in hyperbolic geometry and more generally in negative curvature. Labourie introduced in 2005 the notion of 'Anosov' subgroup which proves progressively to be the right generalizations of convex-cocompact groups, especially after the works of Kapovich, Leeb and Porti. This expose will review different caracteriations of those groups, emphasizing the parallel (or difference) with the negative curvature, and will give their basic properties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.