{"title":"石墨烯增强金属基复合材料腐蚀机理研究进展","authors":"Tao Liu, Weimin Lyu, Zhicheng Li, Shen Wang, Xing Wang, Jiaxin Jiang, Xiao-song Jiang","doi":"10.1515/ntrev-2022-0566","DOIUrl":null,"url":null,"abstract":"Abstract For components serving in high temperature, humidity, and salinity marine corrosive environment, it is vital to analyze the causes of corrosion behavior and corrosion mechanisms. Metal matrix composites (MMCs) are commonly used materials for offshore equipment. In this work, the corrosion factors of MMCs in marine environments are analyzed from the characteristics of high temperature, humidity, and salinity service environment, and the corrosion mechanisms are summarized. Graphene (Gr) has excellent comprehensive properties and great potential for applications in metal protection materials. In recent years, research into Gr anti-corrosive applications encompasses two aspects: pure Gr coatings and Gr composite coatings. Gr applied in MMCs is yet to be extensively studied. Therefore, this study analyzes the corrosion resistance of Gr–metal composites and discusses the corrosion resistance mechanisms of Gr-reinforced MMCs, which provides a reference for the design of Gr-reinforced metal composites and the optimization of corrosion resistance performance. Finally, future development directions for Gr–metal composites are proposed, and the critical factors such as defects, dispersion, content, size, arrangement, interface, and conductivity of Gr in the composites affecting their anti-corrosion properties are discussed. Graphical abstract","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent progress on corrosion mechanisms of graphene-reinforced metal matrix composites\",\"authors\":\"Tao Liu, Weimin Lyu, Zhicheng Li, Shen Wang, Xing Wang, Jiaxin Jiang, Xiao-song Jiang\",\"doi\":\"10.1515/ntrev-2022-0566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For components serving in high temperature, humidity, and salinity marine corrosive environment, it is vital to analyze the causes of corrosion behavior and corrosion mechanisms. Metal matrix composites (MMCs) are commonly used materials for offshore equipment. In this work, the corrosion factors of MMCs in marine environments are analyzed from the characteristics of high temperature, humidity, and salinity service environment, and the corrosion mechanisms are summarized. Graphene (Gr) has excellent comprehensive properties and great potential for applications in metal protection materials. In recent years, research into Gr anti-corrosive applications encompasses two aspects: pure Gr coatings and Gr composite coatings. Gr applied in MMCs is yet to be extensively studied. Therefore, this study analyzes the corrosion resistance of Gr–metal composites and discusses the corrosion resistance mechanisms of Gr-reinforced MMCs, which provides a reference for the design of Gr-reinforced metal composites and the optimization of corrosion resistance performance. Finally, future development directions for Gr–metal composites are proposed, and the critical factors such as defects, dispersion, content, size, arrangement, interface, and conductivity of Gr in the composites affecting their anti-corrosion properties are discussed. Graphical abstract\",\"PeriodicalId\":18839,\"journal\":{\"name\":\"Nanotechnology Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/ntrev-2022-0566\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ntrev-2022-0566","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent progress on corrosion mechanisms of graphene-reinforced metal matrix composites
Abstract For components serving in high temperature, humidity, and salinity marine corrosive environment, it is vital to analyze the causes of corrosion behavior and corrosion mechanisms. Metal matrix composites (MMCs) are commonly used materials for offshore equipment. In this work, the corrosion factors of MMCs in marine environments are analyzed from the characteristics of high temperature, humidity, and salinity service environment, and the corrosion mechanisms are summarized. Graphene (Gr) has excellent comprehensive properties and great potential for applications in metal protection materials. In recent years, research into Gr anti-corrosive applications encompasses two aspects: pure Gr coatings and Gr composite coatings. Gr applied in MMCs is yet to be extensively studied. Therefore, this study analyzes the corrosion resistance of Gr–metal composites and discusses the corrosion resistance mechanisms of Gr-reinforced MMCs, which provides a reference for the design of Gr-reinforced metal composites and the optimization of corrosion resistance performance. Finally, future development directions for Gr–metal composites are proposed, and the critical factors such as defects, dispersion, content, size, arrangement, interface, and conductivity of Gr in the composites affecting their anti-corrosion properties are discussed. Graphical abstract
期刊介绍:
The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings.
In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.