涉及捕食者自相残杀和避难的捕食者-猎物模型的非标准数值格式

Q2 Mathematics
Maya Rayungsari, A. Suryanto, W. M. Kusumawinahyu, I. Darti
{"title":"涉及捕食者自相残杀和避难的捕食者-猎物模型的非标准数值格式","authors":"Maya Rayungsari, A. Suryanto, W. M. Kusumawinahyu, I. Darti","doi":"10.5614/cbms.2023.6.1.2","DOIUrl":null,"url":null,"abstract":"In this study, we implement a Nonstandard Finite Difference (NSFD) scheme for a predator-prey model involving cannibalism and refuge in predator. The scheme which is considered as a discrete dynamical system is analyzed. The performed analysis includes the determination of equilibrium point and its local stability. The system has four equilibrium points, namely the origin, the prey extinction point, the predator extinction point, and the coexistence point, which have exactly the same form and existence conditions as those in continuous system. The local stability of each first three equilibrium points is consistent with the one in continuous system. The stability of the coexistence point depends on the integration time step size. Nevertheless, the NSFD scheme allows us to choose the integration time step size for the solution to converge to a feasible point more flexible than the Euler and 4th order Runge-Kutta schemes. These are shown via numerical simulations.","PeriodicalId":33129,"journal":{"name":"Communication in Biomathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonstandard Numerical Scheme for a Predator-Prey Model Involving Predator Cannibalism and Refuge\",\"authors\":\"Maya Rayungsari, A. Suryanto, W. M. Kusumawinahyu, I. Darti\",\"doi\":\"10.5614/cbms.2023.6.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we implement a Nonstandard Finite Difference (NSFD) scheme for a predator-prey model involving cannibalism and refuge in predator. The scheme which is considered as a discrete dynamical system is analyzed. The performed analysis includes the determination of equilibrium point and its local stability. The system has four equilibrium points, namely the origin, the prey extinction point, the predator extinction point, and the coexistence point, which have exactly the same form and existence conditions as those in continuous system. The local stability of each first three equilibrium points is consistent with the one in continuous system. The stability of the coexistence point depends on the integration time step size. Nevertheless, the NSFD scheme allows us to choose the integration time step size for the solution to converge to a feasible point more flexible than the Euler and 4th order Runge-Kutta schemes. These are shown via numerical simulations.\",\"PeriodicalId\":33129,\"journal\":{\"name\":\"Communication in Biomathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communication in Biomathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/cbms.2023.6.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication in Biomathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/cbms.2023.6.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们实现了一种非标准有限差分(NSFD)方案,用于涉及同类相食和捕食者避难的捕食者-猎物模型。将该方案作为一个离散动力系统进行分析。所做的分析包括平衡点的确定及其局部稳定性。该系统有四个平衡点,即原点、猎物灭绝点、捕食者灭绝点和共存点,它们的形态和存在条件与连续系统完全相同。前三个平衡点的局部稳定性与连续系统的局部稳定性一致。共存点的稳定性取决于积分时间步长。然而,NSFD格式允许我们选择积分时间步长,使解收敛到一个比欧拉和四阶龙格-库塔格式更灵活的可行点。这些都是通过数值模拟得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonstandard Numerical Scheme for a Predator-Prey Model Involving Predator Cannibalism and Refuge
In this study, we implement a Nonstandard Finite Difference (NSFD) scheme for a predator-prey model involving cannibalism and refuge in predator. The scheme which is considered as a discrete dynamical system is analyzed. The performed analysis includes the determination of equilibrium point and its local stability. The system has four equilibrium points, namely the origin, the prey extinction point, the predator extinction point, and the coexistence point, which have exactly the same form and existence conditions as those in continuous system. The local stability of each first three equilibrium points is consistent with the one in continuous system. The stability of the coexistence point depends on the integration time step size. Nevertheless, the NSFD scheme allows us to choose the integration time step size for the solution to converge to a feasible point more flexible than the Euler and 4th order Runge-Kutta schemes. These are shown via numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communication in Biomathematical Sciences
Communication in Biomathematical Sciences Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信