大型$$p$$ -Core $$p'$$ -加性残差图上的分区和行走

Pub Date : 2022-11-24 DOI:10.1007/s00026-022-00622-2
Eoghan McDowell
{"title":"大型$$p$$ -Core $$p'$$ -加性残差图上的分区和行走","authors":"Eoghan McDowell","doi":"10.1007/s00026-022-00622-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates partitions which have neither parts nor hook lengths divisible by <span>\\(p\\)</span>, referred to as <span>\\(p\\)</span>-core <span>\\(p'\\)</span>-partitions. We show that the largest <span>\\(p\\)</span>-core <span>\\(p'\\)</span>-partition corresponds to the longest walk on a graph with vertices <span>\\(\\{0, 1, \\ldots , p-1\\}\\)</span> and labelled edges defined via addition modulo <span>\\(p\\)</span>. We also exhibit an explicit family of large <span>\\(p\\)</span>-core <span>\\(p'\\)</span>-partitions, giving a lower bound on the size of the largest such partition which is of the same degree as the upper bound found by McSpirit and Ono.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large \\\\(p\\\\)-Core \\\\(p'\\\\)-Partitions and Walks on the Additive Residue Graph\",\"authors\":\"Eoghan McDowell\",\"doi\":\"10.1007/s00026-022-00622-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates partitions which have neither parts nor hook lengths divisible by <span>\\\\(p\\\\)</span>, referred to as <span>\\\\(p\\\\)</span>-core <span>\\\\(p'\\\\)</span>-partitions. We show that the largest <span>\\\\(p\\\\)</span>-core <span>\\\\(p'\\\\)</span>-partition corresponds to the longest walk on a graph with vertices <span>\\\\(\\\\{0, 1, \\\\ldots , p-1\\\\}\\\\)</span> and labelled edges defined via addition modulo <span>\\\\(p\\\\)</span>. We also exhibit an explicit family of large <span>\\\\(p\\\\)</span>-core <span>\\\\(p'\\\\)</span>-partitions, giving a lower bound on the size of the largest such partition which is of the same degree as the upper bound found by McSpirit and Ono.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-022-00622-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00622-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了既没有可被\(p\)整除的部分长度也没有钩长度的分区,称为\(p \)-core\(p'\)-分区。我们证明了最大的\(p\)-核心\(p'\)-分区对应于具有顶点\(0,1,\ldots,p-1\)和通过加法模\(p\\)定义的标记边的图上的最长走。我们还展示了一个大\(p\)-核\(p'\)-分区的显式族,给出了最大此类分区大小的下界,其程度与McSpirit和Ono发现的上界相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large \(p\)-Core \(p'\)-Partitions and Walks on the Additive Residue Graph

分享
查看原文
Large \(p\)-Core \(p'\)-Partitions and Walks on the Additive Residue Graph

This paper investigates partitions which have neither parts nor hook lengths divisible by \(p\), referred to as \(p\)-core \(p'\)-partitions. We show that the largest \(p\)-core \(p'\)-partition corresponds to the longest walk on a graph with vertices \(\{0, 1, \ldots , p-1\}\) and labelled edges defined via addition modulo \(p\). We also exhibit an explicit family of large \(p\)-core \(p'\)-partitions, giving a lower bound on the size of the largest such partition which is of the same degree as the upper bound found by McSpirit and Ono.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信