Florian Bachinger, Gabriel Kronberger, Michael Affenzeller
{"title":"智能制造和模型管理中预测模型的持续改进和适应","authors":"Florian Bachinger, Gabriel Kronberger, Michael Affenzeller","doi":"10.1049/cim2.12009","DOIUrl":null,"url":null,"abstract":"<p>Predictive models are increasingly deployed within smart manufacturing for the control of industrial plants. With this arises, the need for long-term monitoring of model performance and adaptation of models if surrounding conditions change and the desired prediction accuracy is no longer met. The heterogeneous landscape of application scenarios, machine learning frameworks, hardware-restricted IIoT platforms, and the diversity of enterprise systems require flexible, yet stable and error resilient solutions that allow the automated adaptation of prediction models. Recommendations are provided for the application and management of predictive models in smart manufacturing. Typical causes for concept drift in real-world smart manufacturing applications are analysed, and essential steps in data and prediction model management are highlighted, to ensure reliability and efficiency in such applications. For this purpose, recommendations and a reference architecture for model management are provided. In addition, experimental results of two model adaptation strategies on an artificial dataset are shown.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"3 1","pages":"48-63"},"PeriodicalIF":2.5000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12009","citationCount":"1","resultStr":"{\"title\":\"Continuous improvement and adaptation of predictive models in smart manufacturing and model management\",\"authors\":\"Florian Bachinger, Gabriel Kronberger, Michael Affenzeller\",\"doi\":\"10.1049/cim2.12009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predictive models are increasingly deployed within smart manufacturing for the control of industrial plants. With this arises, the need for long-term monitoring of model performance and adaptation of models if surrounding conditions change and the desired prediction accuracy is no longer met. The heterogeneous landscape of application scenarios, machine learning frameworks, hardware-restricted IIoT platforms, and the diversity of enterprise systems require flexible, yet stable and error resilient solutions that allow the automated adaptation of prediction models. Recommendations are provided for the application and management of predictive models in smart manufacturing. Typical causes for concept drift in real-world smart manufacturing applications are analysed, and essential steps in data and prediction model management are highlighted, to ensure reliability and efficiency in such applications. For this purpose, recommendations and a reference architecture for model management are provided. In addition, experimental results of two model adaptation strategies on an artificial dataset are shown.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"3 1\",\"pages\":\"48-63\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12009\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1
摘要
Josef Ressel符号回归中心,上奥地利应用科学大学,哈根堡,奥地利,启发和进化算法实验室,上奥地利应用科学大学,哈根堡,奥地利,面向应用的知识处理研究所(FAW),约翰内斯开普勒大学,林茨,奥地利,约翰内斯开普勒大学,林茨,形式模型和验证研究所
Continuous improvement and adaptation of predictive models in smart manufacturing and model management
Predictive models are increasingly deployed within smart manufacturing for the control of industrial plants. With this arises, the need for long-term monitoring of model performance and adaptation of models if surrounding conditions change and the desired prediction accuracy is no longer met. The heterogeneous landscape of application scenarios, machine learning frameworks, hardware-restricted IIoT platforms, and the diversity of enterprise systems require flexible, yet stable and error resilient solutions that allow the automated adaptation of prediction models. Recommendations are provided for the application and management of predictive models in smart manufacturing. Typical causes for concept drift in real-world smart manufacturing applications are analysed, and essential steps in data and prediction model management are highlighted, to ensure reliability and efficiency in such applications. For this purpose, recommendations and a reference architecture for model management are provided. In addition, experimental results of two model adaptation strategies on an artificial dataset are shown.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).