整值传递函数模型的贝叶斯建模

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Aljo Clair Pingal, Cathy W. S. Chen
{"title":"整值传递函数模型的贝叶斯建模","authors":"Aljo Clair Pingal, Cathy W. S. Chen","doi":"10.1177/1471082x221075477","DOIUrl":null,"url":null,"abstract":"External events are commonly known as interventions that often affect times series of counts. This research introduces a class of transfer function models that include four different types of interventions on integer-valued time series: abrupt start and abrupt decay (additive outlier), abrupt start and gradual decay (transient shift), abrupt start and permanent effect (level shift) and gradual start and permanent effect. We propose integer-valued transfer function models incorporating a generalized Poisson, log-linear generalized Poisson or negative binomial to estimate and detect these four types of interventions in a time series of counts. Utilizing Bayesian methods, which are adaptive Markov chain Monte Carlo (MCMC) algorithms to obtain the estimation, we further employ deviance information criterion (DIC), posterior odd ratios and mean squared standardized residual for model comparisons. As an illustration, this study evaluates the effectiveness of our methods through a simulation study and application to crime data in Albury City, New South Wales (NSW) Australia. Simulation results show that the MCMC procedure is reasonably effective. The empirical outcome also reveals that the proposed models are able to successfully detect the locations and type of interventions.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian modelling of integer-valued transfer function models\",\"authors\":\"Aljo Clair Pingal, Cathy W. S. Chen\",\"doi\":\"10.1177/1471082x221075477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"External events are commonly known as interventions that often affect times series of counts. This research introduces a class of transfer function models that include four different types of interventions on integer-valued time series: abrupt start and abrupt decay (additive outlier), abrupt start and gradual decay (transient shift), abrupt start and permanent effect (level shift) and gradual start and permanent effect. We propose integer-valued transfer function models incorporating a generalized Poisson, log-linear generalized Poisson or negative binomial to estimate and detect these four types of interventions in a time series of counts. Utilizing Bayesian methods, which are adaptive Markov chain Monte Carlo (MCMC) algorithms to obtain the estimation, we further employ deviance information criterion (DIC), posterior odd ratios and mean squared standardized residual for model comparisons. As an illustration, this study evaluates the effectiveness of our methods through a simulation study and application to crime data in Albury City, New South Wales (NSW) Australia. Simulation results show that the MCMC procedure is reasonably effective. The empirical outcome also reveals that the proposed models are able to successfully detect the locations and type of interventions.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082x221075477\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x221075477","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

外部事件通常被称为干预,通常会影响计数的时间序列。本文介绍了一类传递函数模型,该模型包括四种不同类型对整值时间序列的干预:突然启动和突然衰减(加性离群值)、突然启动和逐渐衰减(瞬态位移)、突然启动和永久效应(水平位移)和逐渐启动和永久效应。我们提出了包含广义泊松、对数线性广义泊松或负二项的整数值传递函数模型,以估计和检测计数时间序列中的这四种干预类型。利用自适应马尔可夫链蒙特卡罗(MCMC)算法贝叶斯方法获得估计,我们进一步采用偏差信息准则(DIC)、后验奇比和均方标准化残差进行模型比较。作为例证,本研究通过模拟研究和应用于澳大利亚新南威尔士州奥尔伯里市的犯罪数据来评估我们方法的有效性。仿真结果表明,MCMC程序是合理有效的。实证结果还表明,所提出的模型能够成功地检测干预的位置和类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian modelling of integer-valued transfer function models
External events are commonly known as interventions that often affect times series of counts. This research introduces a class of transfer function models that include four different types of interventions on integer-valued time series: abrupt start and abrupt decay (additive outlier), abrupt start and gradual decay (transient shift), abrupt start and permanent effect (level shift) and gradual start and permanent effect. We propose integer-valued transfer function models incorporating a generalized Poisson, log-linear generalized Poisson or negative binomial to estimate and detect these four types of interventions in a time series of counts. Utilizing Bayesian methods, which are adaptive Markov chain Monte Carlo (MCMC) algorithms to obtain the estimation, we further employ deviance information criterion (DIC), posterior odd ratios and mean squared standardized residual for model comparisons. As an illustration, this study evaluates the effectiveness of our methods through a simulation study and application to crime data in Albury City, New South Wales (NSW) Australia. Simulation results show that the MCMC procedure is reasonably effective. The empirical outcome also reveals that the proposed models are able to successfully detect the locations and type of interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信