物联网时间序列的在线证据最近邻分类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Patrick Toman, N. Ravishanker, S. Rajasekaran, Nathan Lally
{"title":"物联网时间序列的在线证据最近邻分类","authors":"Patrick Toman, N. Ravishanker, S. Rajasekaran, Nathan Lally","doi":"10.1111/insr.12540","DOIUrl":null,"url":null,"abstract":"The ‘Internet of Things’ (IoT) is a rapidly developing set of technologies that leverages large numbers of networked sensors, to relay data in an online fashion. Typically, knowledge of the sensor environment is incomplete and subject to changes over time. There is a need to employ classification algorithms to understand the data. We first review of existing time series classification (TSC) approaches, with emphasis on the well‐known k‐nearest neighbours (kNN) methods. We extend these to dynamical kNN classifiers, and discuss their shortcomings for handling the inherent uncertainty in IoT data. We next review evidential kNN ( EkNN ) classifiers that leverage the well‐known Dempster–Shafer theory to allow principled uncertainty quantification. We develop a dynamic EkNN approach for classifying IoT streams via algorithms that use evidential theoretic pattern rejection rules for (i) classifying incoming patterns into a set of oracle classes, (ii) automatically pruning ambiguously labelled patterns such as aberrant streams (due to malfunctioning sensors, say), and (iii) identifying novel classes that may emerge in new subsequences over time. While these methods have wide applicability in many domains, we illustrate the dynamic kNN and EkNN approaches for classifying a large, noisy IoT time series dataset from an insurance firm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Evidential Nearest Neighbour Classification for Internet of Things Time Series\",\"authors\":\"Patrick Toman, N. Ravishanker, S. Rajasekaran, Nathan Lally\",\"doi\":\"10.1111/insr.12540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ‘Internet of Things’ (IoT) is a rapidly developing set of technologies that leverages large numbers of networked sensors, to relay data in an online fashion. Typically, knowledge of the sensor environment is incomplete and subject to changes over time. There is a need to employ classification algorithms to understand the data. We first review of existing time series classification (TSC) approaches, with emphasis on the well‐known k‐nearest neighbours (kNN) methods. We extend these to dynamical kNN classifiers, and discuss their shortcomings for handling the inherent uncertainty in IoT data. We next review evidential kNN ( EkNN ) classifiers that leverage the well‐known Dempster–Shafer theory to allow principled uncertainty quantification. We develop a dynamic EkNN approach for classifying IoT streams via algorithms that use evidential theoretic pattern rejection rules for (i) classifying incoming patterns into a set of oracle classes, (ii) automatically pruning ambiguously labelled patterns such as aberrant streams (due to malfunctioning sensors, say), and (iii) identifying novel classes that may emerge in new subsequences over time. While these methods have wide applicability in many domains, we illustrate the dynamic kNN and EkNN approaches for classifying a large, noisy IoT time series dataset from an insurance firm.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/insr.12540\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/insr.12540","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Evidential Nearest Neighbour Classification for Internet of Things Time Series
The ‘Internet of Things’ (IoT) is a rapidly developing set of technologies that leverages large numbers of networked sensors, to relay data in an online fashion. Typically, knowledge of the sensor environment is incomplete and subject to changes over time. There is a need to employ classification algorithms to understand the data. We first review of existing time series classification (TSC) approaches, with emphasis on the well‐known k‐nearest neighbours (kNN) methods. We extend these to dynamical kNN classifiers, and discuss their shortcomings for handling the inherent uncertainty in IoT data. We next review evidential kNN ( EkNN ) classifiers that leverage the well‐known Dempster–Shafer theory to allow principled uncertainty quantification. We develop a dynamic EkNN approach for classifying IoT streams via algorithms that use evidential theoretic pattern rejection rules for (i) classifying incoming patterns into a set of oracle classes, (ii) automatically pruning ambiguously labelled patterns such as aberrant streams (due to malfunctioning sensors, say), and (iii) identifying novel classes that may emerge in new subsequences over time. While these methods have wide applicability in many domains, we illustrate the dynamic kNN and EkNN approaches for classifying a large, noisy IoT time series dataset from an insurance firm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信