变压器抽象句法表征能力的评估——基于长距离一致性的对比分析

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bingzhi Li, Guillaume Wisniewski, Benoit Crabb'e
{"title":"变压器抽象句法表征能力的评估——基于长距离一致性的对比分析","authors":"Bingzhi Li, Guillaume Wisniewski, Benoit Crabb'e","doi":"10.1162/tacl_a_00531","DOIUrl":null,"url":null,"abstract":"Many studies have shown that transformers are able to predict subject-verb agreement, demonstrating their ability to uncover an abstract representation of the sentence in an unsupervised way. Recently, Li et al. (2021) found that transformers were also able to predict the object-past participle agreement in French, the modeling of which in formal grammar is fundamentally different from that of subject-verb agreement and relies on a movement and an anaphora resolution. To better understand transformers’ internal working, we propose to contrast how they handle these two kinds of agreement. Using probing and counterfactual analysis methods, our experiments on French agreements show that (i) the agreement task suffers from several confounders that partially question the conclusions drawn so far and (ii) transformers handle subject-verb and object-past participle agreements in a way that is consistent with their modeling in theoretical linguistics.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"18-33"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Assessing the Capacity of Transformer to Abstract Syntactic Representations: A Contrastive Analysis Based on Long-distance Agreement\",\"authors\":\"Bingzhi Li, Guillaume Wisniewski, Benoit Crabb'e\",\"doi\":\"10.1162/tacl_a_00531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many studies have shown that transformers are able to predict subject-verb agreement, demonstrating their ability to uncover an abstract representation of the sentence in an unsupervised way. Recently, Li et al. (2021) found that transformers were also able to predict the object-past participle agreement in French, the modeling of which in formal grammar is fundamentally different from that of subject-verb agreement and relies on a movement and an anaphora resolution. To better understand transformers’ internal working, we propose to contrast how they handle these two kinds of agreement. Using probing and counterfactual analysis methods, our experiments on French agreements show that (i) the agreement task suffers from several confounders that partially question the conclusions drawn so far and (ii) transformers handle subject-verb and object-past participle agreements in a way that is consistent with their modeling in theoretical linguistics.\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"11 1\",\"pages\":\"18-33\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00531\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00531","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

许多研究表明,transformer能够预测主动一致性,证明了他们能够以无监督的方式揭示句子的抽象表示。最近,李等人(2021)发现,transformers也能够预测法语中的宾语过去分词一致性,其在形式语法中的建模与主谓一致性有根本不同,依赖于动作和回指解析。为了更好地理解变压器的内部工作,我们建议对比它们如何处理这两种协议。使用探究和反事实分析方法,我们对法语协定的实验表明:(i)协定任务存在一些混淆因素,这些混淆因素对迄今为止得出的结论提出了部分质疑;(ii)变换器处理主词-动词和宾语-过去时分词协定的方式与它们在理论语言学中的建模一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Capacity of Transformer to Abstract Syntactic Representations: A Contrastive Analysis Based on Long-distance Agreement
Many studies have shown that transformers are able to predict subject-verb agreement, demonstrating their ability to uncover an abstract representation of the sentence in an unsupervised way. Recently, Li et al. (2021) found that transformers were also able to predict the object-past participle agreement in French, the modeling of which in formal grammar is fundamentally different from that of subject-verb agreement and relies on a movement and an anaphora resolution. To better understand transformers’ internal working, we propose to contrast how they handle these two kinds of agreement. Using probing and counterfactual analysis methods, our experiments on French agreements show that (i) the agreement task suffers from several confounders that partially question the conclusions drawn so far and (ii) transformers handle subject-verb and object-past participle agreements in a way that is consistent with their modeling in theoretical linguistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信