{"title":"变形修正Korteweg-de Vries方程:多孤子解及其相互作用","authors":"S Suresh Kumar","doi":"10.1007/s12043-023-02581-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we demonstrate how Hirota’s bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg–de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"97 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12043-023-02581-6.pdf","citationCount":"0","resultStr":"{\"title\":\"The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions\",\"authors\":\"S Suresh Kumar\",\"doi\":\"10.1007/s12043-023-02581-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we demonstrate how Hirota’s bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg–de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"97 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12043-023-02581-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-023-02581-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-023-02581-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions
In this paper, we demonstrate how Hirota’s bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg–de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.