弱概周期泛函的不变量意义及其在量子群上的应用

Pub Date : 2023-01-16 DOI:10.4153/S0008439523000061
Ali Ebrahimzadeh Esfahani, M. Nemati, Mohammad Reza Ghanei
{"title":"弱概周期泛函的不变量意义及其在量子群上的应用","authors":"Ali Ebrahimzadeh Esfahani, M. Nemati, Mohammad Reza Ghanei","doi":"10.4153/S0008439523000061","DOIUrl":null,"url":null,"abstract":"Abstract Let \n${\\mathcal A}$\n be a Banach algebra, and let \n$\\varphi $\n be a nonzero character on \n${\\mathcal A}$\n . For a closed ideal I of \n${\\mathcal A}$\n with \n$I\\not \\subseteq \\ker \\varphi $\n such that I has a bounded approximate identity, we show that \n$\\operatorname {WAP}(\\mathcal {A})$\n , the space of weakly almost periodic functionals on \n${\\mathcal A}$\n , admits a right (left) invariant \n$\\varphi $\n -mean if and only if \n$\\operatorname {WAP}(I)$\n admits a right (left) invariant \n$\\varphi |_I$\n -mean. This generalizes a result due to Neufang for the group algebra \n$L^1(G)$\n as an ideal in the measure algebra \n$M(G)$\n , for a locally compact group G. Then we apply this result to the quantum group algebra \n$L^1({\\mathbb G})$\n of a locally compact quantum group \n${\\mathbb G}$\n . Finally, we study the existence of left and right invariant \n$1$\n -means on \n$ \\operatorname {WAP}(\\mathcal {T}_{\\triangleright }({\\mathbb G}))$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant means on weakly almost periodic functionals with application to quantum groups\",\"authors\":\"Ali Ebrahimzadeh Esfahani, M. Nemati, Mohammad Reza Ghanei\",\"doi\":\"10.4153/S0008439523000061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n${\\\\mathcal A}$\\n be a Banach algebra, and let \\n$\\\\varphi $\\n be a nonzero character on \\n${\\\\mathcal A}$\\n . For a closed ideal I of \\n${\\\\mathcal A}$\\n with \\n$I\\\\not \\\\subseteq \\\\ker \\\\varphi $\\n such that I has a bounded approximate identity, we show that \\n$\\\\operatorname {WAP}(\\\\mathcal {A})$\\n , the space of weakly almost periodic functionals on \\n${\\\\mathcal A}$\\n , admits a right (left) invariant \\n$\\\\varphi $\\n -mean if and only if \\n$\\\\operatorname {WAP}(I)$\\n admits a right (left) invariant \\n$\\\\varphi |_I$\\n -mean. This generalizes a result due to Neufang for the group algebra \\n$L^1(G)$\\n as an ideal in the measure algebra \\n$M(G)$\\n , for a locally compact group G. Then we apply this result to the quantum group algebra \\n$L^1({\\\\mathbb G})$\\n of a locally compact quantum group \\n${\\\\mathbb G}$\\n . Finally, we study the existence of left and right invariant \\n$1$\\n -means on \\n$ \\\\operatorname {WAP}(\\\\mathcal {T}_{\\\\triangleright }({\\\\mathbb G}))$\\n .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008439523000061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439523000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要设${\mathcal A}$是Banach代数,设$\varphi$是${\ mathcal A}上的非零字符。对于${\mathcal a}$的闭理想I与$I\not\substeq\ker\varphi$使得我具有有界近似恒等式,我们证明了$\operatorname{WAP}(\mathcal{a})$,${\ mathcal a}美元上的弱概周期泛函的空间,允许右(左)不变$\varphi$-m均值当且仅当$\operator name{WAP}(I)$允许右(右)不变$\ varphi|_I$-m均值。这推广了Neufang关于群代数$L^1(G)$的一个结果,作为局部紧群G的测度代数$M(G)$中的理想。然后我们将这个结果应用于局部紧量子群${\mathbb G}$的量子群代数$L ^1({\mathbb G})$。最后,我们研究了$\operatorname{WAP}(\mathcal{T}_{\triangleright}({\mathbb G}))$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Invariant means on weakly almost periodic functionals with application to quantum groups
Abstract Let ${\mathcal A}$ be a Banach algebra, and let $\varphi $ be a nonzero character on ${\mathcal A}$ . For a closed ideal I of ${\mathcal A}$ with $I\not \subseteq \ker \varphi $ such that I has a bounded approximate identity, we show that $\operatorname {WAP}(\mathcal {A})$ , the space of weakly almost periodic functionals on ${\mathcal A}$ , admits a right (left) invariant $\varphi $ -mean if and only if $\operatorname {WAP}(I)$ admits a right (left) invariant $\varphi |_I$ -mean. This generalizes a result due to Neufang for the group algebra $L^1(G)$ as an ideal in the measure algebra $M(G)$ , for a locally compact group G. Then we apply this result to the quantum group algebra $L^1({\mathbb G})$ of a locally compact quantum group ${\mathbb G}$ . Finally, we study the existence of left and right invariant $1$ -means on $ \operatorname {WAP}(\mathcal {T}_{\triangleright }({\mathbb G}))$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信