{"title":"Cohen-Lenstra-Martinet启发式的时刻和解释","authors":"Weitong Wang, M. Wood","doi":"10.4171/cmh/514","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to prove theorems that elucidate the Cohen-Lenstra-Martinet conjectures for the distributions of class groups of number fields, and further the understanding of their implications. We start by giving a simpler statement of the conjectures. We show that the probabilities that arise are inversely proportional the to number of automorphisms of structures slightly larger than the class groups. We find the moments of the Cohen-Lenstra-Martinet distributions and prove that the distributions are determined by their moments. In order to apply these conjectures to class groups of non-Galois fields, we prove a new theorem on the capitulation kernel (of ideal classes that become trivial in a larger field) to relate the class groups of non-Galois fields to the class groups of Galois fields. We then construct an integral model of the Hecke algebra of a finite group, show that it acts naturally on class groups of non-Galois fields, and prove that the Cohen-Lenstra-Martinet conjectures predict a distribution for class groups of non-Galois fields that involves the inverse of the number of automorphisms of the class group as a Hecke-module.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Moments and interpretations of the Cohen–Lenstra–Martinet heuristics\",\"authors\":\"Weitong Wang, M. Wood\",\"doi\":\"10.4171/cmh/514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to prove theorems that elucidate the Cohen-Lenstra-Martinet conjectures for the distributions of class groups of number fields, and further the understanding of their implications. We start by giving a simpler statement of the conjectures. We show that the probabilities that arise are inversely proportional the to number of automorphisms of structures slightly larger than the class groups. We find the moments of the Cohen-Lenstra-Martinet distributions and prove that the distributions are determined by their moments. In order to apply these conjectures to class groups of non-Galois fields, we prove a new theorem on the capitulation kernel (of ideal classes that become trivial in a larger field) to relate the class groups of non-Galois fields to the class groups of Galois fields. We then construct an integral model of the Hecke algebra of a finite group, show that it acts naturally on class groups of non-Galois fields, and prove that the Cohen-Lenstra-Martinet conjectures predict a distribution for class groups of non-Galois fields that involves the inverse of the number of automorphisms of the class group as a Hecke-module.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/514\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/514","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Moments and interpretations of the Cohen–Lenstra–Martinet heuristics
The goal of this paper is to prove theorems that elucidate the Cohen-Lenstra-Martinet conjectures for the distributions of class groups of number fields, and further the understanding of their implications. We start by giving a simpler statement of the conjectures. We show that the probabilities that arise are inversely proportional the to number of automorphisms of structures slightly larger than the class groups. We find the moments of the Cohen-Lenstra-Martinet distributions and prove that the distributions are determined by their moments. In order to apply these conjectures to class groups of non-Galois fields, we prove a new theorem on the capitulation kernel (of ideal classes that become trivial in a larger field) to relate the class groups of non-Galois fields to the class groups of Galois fields. We then construct an integral model of the Hecke algebra of a finite group, show that it acts naturally on class groups of non-Galois fields, and prove that the Cohen-Lenstra-Martinet conjectures predict a distribution for class groups of non-Galois fields that involves the inverse of the number of automorphisms of the class group as a Hecke-module.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.