Cohen-Lenstra-Martinet启发式的时刻和解释

IF 1.1 3区 数学 Q1 MATHEMATICS
Weitong Wang, M. Wood
{"title":"Cohen-Lenstra-Martinet启发式的时刻和解释","authors":"Weitong Wang, M. Wood","doi":"10.4171/cmh/514","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to prove theorems that elucidate the Cohen-Lenstra-Martinet conjectures for the distributions of class groups of number fields, and further the understanding of their implications. We start by giving a simpler statement of the conjectures. We show that the probabilities that arise are inversely proportional the to number of automorphisms of structures slightly larger than the class groups. We find the moments of the Cohen-Lenstra-Martinet distributions and prove that the distributions are determined by their moments. In order to apply these conjectures to class groups of non-Galois fields, we prove a new theorem on the capitulation kernel (of ideal classes that become trivial in a larger field) to relate the class groups of non-Galois fields to the class groups of Galois fields. We then construct an integral model of the Hecke algebra of a finite group, show that it acts naturally on class groups of non-Galois fields, and prove that the Cohen-Lenstra-Martinet conjectures predict a distribution for class groups of non-Galois fields that involves the inverse of the number of automorphisms of the class group as a Hecke-module.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Moments and interpretations of the Cohen–Lenstra–Martinet heuristics\",\"authors\":\"Weitong Wang, M. Wood\",\"doi\":\"10.4171/cmh/514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to prove theorems that elucidate the Cohen-Lenstra-Martinet conjectures for the distributions of class groups of number fields, and further the understanding of their implications. We start by giving a simpler statement of the conjectures. We show that the probabilities that arise are inversely proportional the to number of automorphisms of structures slightly larger than the class groups. We find the moments of the Cohen-Lenstra-Martinet distributions and prove that the distributions are determined by their moments. In order to apply these conjectures to class groups of non-Galois fields, we prove a new theorem on the capitulation kernel (of ideal classes that become trivial in a larger field) to relate the class groups of non-Galois fields to the class groups of Galois fields. We then construct an integral model of the Hecke algebra of a finite group, show that it acts naturally on class groups of non-Galois fields, and prove that the Cohen-Lenstra-Martinet conjectures predict a distribution for class groups of non-Galois fields that involves the inverse of the number of automorphisms of the class group as a Hecke-module.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/514\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/514","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

本文的目的是证明关于数域类群分布的Cohen-Lenstra-Martinet猜想的定理,并进一步理解其含义。我们首先对这些猜想给出一个更简单的陈述。我们证明了出现的概率与略大于类群的结构的自同构的数量成反比。我们找到了Cohen-Lenstra-Martinet分布的矩,并证明了这些分布是由它们的矩决定的。为了将这些猜想应用于非伽罗瓦域的类群,我们证明了一个关于投降核的新定理(在更大的域中变得平凡的理想类),将非伽罗瓦域的类群与伽罗瓦域的类群联系起来。然后构造了有限群的Hecke代数的积分模型,证明了它自然作用于非伽罗瓦域的类群,并证明了Cohen-Lenstra-Martinet猜想预测了非伽罗瓦域的类群的分布,该分布涉及类群的自同构数的逆作为Hecke模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moments and interpretations of the Cohen–Lenstra–Martinet heuristics
The goal of this paper is to prove theorems that elucidate the Cohen-Lenstra-Martinet conjectures for the distributions of class groups of number fields, and further the understanding of their implications. We start by giving a simpler statement of the conjectures. We show that the probabilities that arise are inversely proportional the to number of automorphisms of structures slightly larger than the class groups. We find the moments of the Cohen-Lenstra-Martinet distributions and prove that the distributions are determined by their moments. In order to apply these conjectures to class groups of non-Galois fields, we prove a new theorem on the capitulation kernel (of ideal classes that become trivial in a larger field) to relate the class groups of non-Galois fields to the class groups of Galois fields. We then construct an integral model of the Hecke algebra of a finite group, show that it acts naturally on class groups of non-Galois fields, and prove that the Cohen-Lenstra-Martinet conjectures predict a distribution for class groups of non-Galois fields that involves the inverse of the number of automorphisms of the class group as a Hecke-module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信