石墨烯-介电介质杂化超表面中准束缚态的独立可调谐Fano共振

IF 1.1 4区 物理与天体物理 Q4 NANOSCIENCE & NANOTECHNOLOGY
Meng Wang, Wudeng Wang
{"title":"石墨烯-介电介质杂化超表面中准束缚态的独立可调谐Fano共振","authors":"Meng Wang, Wudeng Wang","doi":"10.1117/1.JNP.17.016014","DOIUrl":null,"url":null,"abstract":"Abstract. We study an independently tunable Fano resonance from quasibound state in the continuum and polarization-independent toroidal dipole resonance in hybrid graphene–dielectric metasurface consisting of a nanoring and a cross-shaped nanobar. The unique structural properties of the proposed metasurface can support directional toroidal dipole mode, where the asymmetric magnetic field enhancement can be dynamically switched on and off while maintaining polarization-independent Fano spectral response. Through reducing or increasing inner radius of nanoring, an additional quasi-BIC dominated by magnetic dipole moment can be excited and independently tuned by altering the polarization direction of the incident wave. In addition, the quasi-BIC can be effectively modulated via adjusting the Fermi energy and layer numbers of the graphene. Our results can be of practical interest for a variety of applications including optical modulator, filter, switches, and light trapping.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independently tunable Fano resonance from quasibound state in the continuum in hybrid graphene–dielectric metasurface for magnetic field tunability\",\"authors\":\"Meng Wang, Wudeng Wang\",\"doi\":\"10.1117/1.JNP.17.016014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We study an independently tunable Fano resonance from quasibound state in the continuum and polarization-independent toroidal dipole resonance in hybrid graphene–dielectric metasurface consisting of a nanoring and a cross-shaped nanobar. The unique structural properties of the proposed metasurface can support directional toroidal dipole mode, where the asymmetric magnetic field enhancement can be dynamically switched on and off while maintaining polarization-independent Fano spectral response. Through reducing or increasing inner radius of nanoring, an additional quasi-BIC dominated by magnetic dipole moment can be excited and independently tuned by altering the polarization direction of the incident wave. In addition, the quasi-BIC can be effectively modulated via adjusting the Fermi energy and layer numbers of the graphene. Our results can be of practical interest for a variety of applications including optical modulator, filter, switches, and light trapping.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.17.016014\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.016014","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们研究了连续介质中准束缚态的独立可调谐法诺共振和由纳米环和十字形纳米棒组成的石墨烯-介电混合超表面中不依赖极化的环形偶极子共振。所提出的超表面的独特结构特性可以支持定向环向偶极子模式,其中不对称磁场增强可以动态打开和关闭,同时保持与极化无关的Fano光谱响应。通过减小或增大纳米环的内半径,可以通过改变入射波的极化方向来激发和独立调谐磁偶极矩主导的额外准bic。此外,可以通过调整石墨烯的费米能和层数来有效地调制准bic。我们的研究结果对包括光调制器、滤波器、开关和光捕获在内的各种应用具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independently tunable Fano resonance from quasibound state in the continuum in hybrid graphene–dielectric metasurface for magnetic field tunability
Abstract. We study an independently tunable Fano resonance from quasibound state in the continuum and polarization-independent toroidal dipole resonance in hybrid graphene–dielectric metasurface consisting of a nanoring and a cross-shaped nanobar. The unique structural properties of the proposed metasurface can support directional toroidal dipole mode, where the asymmetric magnetic field enhancement can be dynamically switched on and off while maintaining polarization-independent Fano spectral response. Through reducing or increasing inner radius of nanoring, an additional quasi-BIC dominated by magnetic dipole moment can be excited and independently tuned by altering the polarization direction of the incident wave. In addition, the quasi-BIC can be effectively modulated via adjusting the Fermi energy and layer numbers of the graphene. Our results can be of practical interest for a variety of applications including optical modulator, filter, switches, and light trapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanophotonics
Journal of Nanophotonics 工程技术-光学
CiteScore
2.60
自引率
6.70%
发文量
42
审稿时长
3 months
期刊介绍: The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信