Fan Li, Chunlian Jin, Liangsheng Zhang, Jihua Wang
{"title":"超重组植物:植物育种的新兴领域","authors":"Fan Li, Chunlian Jin, Liangsheng Zhang, Jihua Wang","doi":"10.1080/07352689.2021.1985819","DOIUrl":null,"url":null,"abstract":"Abstract Novelty is the primary requirement and breeding target for plant breeding, which can make a significant contribution to the new cultivar. The key factor for successful breeding is the genetic variation in the progeny, which depends on the degree of genetic material mixing after meiosis. However, meiotic recombination is tightly astricting in plants, resulting in a limited number of crossovers (COs). Recently, several anti-CO factors have been identified that limiting the meiotic recombination in plants, and the knock-out mutants displayed a significant increase in recombination frequency. This provides a universal tool to manipulate the meiotic recombination in plants by applying anti-CO genes, which will facilitate the breeding procedure. Due to the rapid development of genome sequencing and gene editing technologies, the genomes of more and more plants have been sequenced. In the meanwhile, the efficient CRISPR-Cas9 system has also been established in plants. Thus, it’s time to break the shackles of meiotic recombination to create novel cultivars in the biological era of genomics. Here we summarize the functional studies of the main meiotic recombination suppressors in plants, with the discussion of the possibility to apply the anti-CO genes in plant breeding as an emerging tool, especially for ornamental plant breeding.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hyper-Recombinant Plants: An Emerging Field for Plant Breeding\",\"authors\":\"Fan Li, Chunlian Jin, Liangsheng Zhang, Jihua Wang\",\"doi\":\"10.1080/07352689.2021.1985819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Novelty is the primary requirement and breeding target for plant breeding, which can make a significant contribution to the new cultivar. The key factor for successful breeding is the genetic variation in the progeny, which depends on the degree of genetic material mixing after meiosis. However, meiotic recombination is tightly astricting in plants, resulting in a limited number of crossovers (COs). Recently, several anti-CO factors have been identified that limiting the meiotic recombination in plants, and the knock-out mutants displayed a significant increase in recombination frequency. This provides a universal tool to manipulate the meiotic recombination in plants by applying anti-CO genes, which will facilitate the breeding procedure. Due to the rapid development of genome sequencing and gene editing technologies, the genomes of more and more plants have been sequenced. In the meanwhile, the efficient CRISPR-Cas9 system has also been established in plants. Thus, it’s time to break the shackles of meiotic recombination to create novel cultivars in the biological era of genomics. Here we summarize the functional studies of the main meiotic recombination suppressors in plants, with the discussion of the possibility to apply the anti-CO genes in plant breeding as an emerging tool, especially for ornamental plant breeding.\",\"PeriodicalId\":10854,\"journal\":{\"name\":\"Critical Reviews in Plant Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07352689.2021.1985819\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2021.1985819","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Hyper-Recombinant Plants: An Emerging Field for Plant Breeding
Abstract Novelty is the primary requirement and breeding target for plant breeding, which can make a significant contribution to the new cultivar. The key factor for successful breeding is the genetic variation in the progeny, which depends on the degree of genetic material mixing after meiosis. However, meiotic recombination is tightly astricting in plants, resulting in a limited number of crossovers (COs). Recently, several anti-CO factors have been identified that limiting the meiotic recombination in plants, and the knock-out mutants displayed a significant increase in recombination frequency. This provides a universal tool to manipulate the meiotic recombination in plants by applying anti-CO genes, which will facilitate the breeding procedure. Due to the rapid development of genome sequencing and gene editing technologies, the genomes of more and more plants have been sequenced. In the meanwhile, the efficient CRISPR-Cas9 system has also been established in plants. Thus, it’s time to break the shackles of meiotic recombination to create novel cultivars in the biological era of genomics. Here we summarize the functional studies of the main meiotic recombination suppressors in plants, with the discussion of the possibility to apply the anti-CO genes in plant breeding as an emerging tool, especially for ornamental plant breeding.
期刊介绍:
Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.