{"title":"弗雷格、托马斯与形式主义","authors":"Richard Lawrence","doi":"10.15173/jhap.v11i2.5366","DOIUrl":null,"url":null,"abstract":"Mathematical formalism is the the view that numbers are “signs” and that arithmetic is like a game played with such signs. Frege’s colleague Thomae defended formalism using an analogy with chess, and Frege’s critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that for Thomae, the formal standpoint is an algebraic perspective on a domain of objects, and a “sign” is not a linguistic expression or mark, but a representation of an object within that perspective. Thomae exploits a shift into this perspective to give a purely algebraic construction of the real numbers from the rational numbers. I suggest that Thomae’s chess analogy is intended to provide a model for such shifts in perspective.","PeriodicalId":36200,"journal":{"name":"Journal of the History of Analytical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frege, Thomae, and Formalism\",\"authors\":\"Richard Lawrence\",\"doi\":\"10.15173/jhap.v11i2.5366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical formalism is the the view that numbers are “signs” and that arithmetic is like a game played with such signs. Frege’s colleague Thomae defended formalism using an analogy with chess, and Frege’s critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that for Thomae, the formal standpoint is an algebraic perspective on a domain of objects, and a “sign” is not a linguistic expression or mark, but a representation of an object within that perspective. Thomae exploits a shift into this perspective to give a purely algebraic construction of the real numbers from the rational numbers. I suggest that Thomae’s chess analogy is intended to provide a model for such shifts in perspective.\",\"PeriodicalId\":36200,\"journal\":{\"name\":\"Journal of the History of Analytical Philosophy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the History of Analytical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15173/jhap.v11i2.5366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the History of Analytical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15173/jhap.v11i2.5366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Mathematical formalism is the the view that numbers are “signs” and that arithmetic is like a game played with such signs. Frege’s colleague Thomae defended formalism using an analogy with chess, and Frege’s critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that for Thomae, the formal standpoint is an algebraic perspective on a domain of objects, and a “sign” is not a linguistic expression or mark, but a representation of an object within that perspective. Thomae exploits a shift into this perspective to give a purely algebraic construction of the real numbers from the rational numbers. I suggest that Thomae’s chess analogy is intended to provide a model for such shifts in perspective.