Vassilios Yfantis , Simon Wenzel , Achim Wagner , Martin Ruskowski , Sebastian Engell
{"title":"基于对偶函数逼近的约束耦合凸和混合整数规划的分层分布优化","authors":"Vassilios Yfantis , Simon Wenzel , Achim Wagner , Martin Ruskowski , Sebastian Engell","doi":"10.1016/j.ejco.2023.100058","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, two new algorithms for dual decomposition-based distributed optimization are presented. Both algorithms rely on the quadratic approximation of the dual function of the primal optimization problem. The dual variables are updated in each iteration through a maximization of the approximated dual function. The first algorithm approximates the dual function by solving a regression problem, based on the values of the dual function collected from previous iterations. The second algorithm updates the parameters of the quadratic approximation via a quasi-Newton scheme. Both algorithms employ step size constraints for the update of the dual variables. Furthermore, the subgradients from previous iterations are stored in order to construct cutting planes, similar to bundle methods for nonsmooth optimization. However, instead of using the cutting planes to formulate a piece-wise linear over-approximation of the dual function, they are used to construct valid inequalities for the update step. In order to demonstrate the efficiency of the algorithms, they are evaluated on a large set of constrained quadratic, convex and mixed-integer benchmark problems and compared to the subgradient method, the bundle trust method, the alternating direction method of multipliers and the quadratic approximation coordination algorithm. The results show that the proposed algorithms perform better than the compared algorithms both in terms of the required number of iterations and in the number of solved benchmark problems in most cases.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100058"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical distributed optimization of constraint-coupled convex and mixed-integer programs using approximations of the dual function\",\"authors\":\"Vassilios Yfantis , Simon Wenzel , Achim Wagner , Martin Ruskowski , Sebastian Engell\",\"doi\":\"10.1016/j.ejco.2023.100058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, two new algorithms for dual decomposition-based distributed optimization are presented. Both algorithms rely on the quadratic approximation of the dual function of the primal optimization problem. The dual variables are updated in each iteration through a maximization of the approximated dual function. The first algorithm approximates the dual function by solving a regression problem, based on the values of the dual function collected from previous iterations. The second algorithm updates the parameters of the quadratic approximation via a quasi-Newton scheme. Both algorithms employ step size constraints for the update of the dual variables. Furthermore, the subgradients from previous iterations are stored in order to construct cutting planes, similar to bundle methods for nonsmooth optimization. However, instead of using the cutting planes to formulate a piece-wise linear over-approximation of the dual function, they are used to construct valid inequalities for the update step. In order to demonstrate the efficiency of the algorithms, they are evaluated on a large set of constrained quadratic, convex and mixed-integer benchmark problems and compared to the subgradient method, the bundle trust method, the alternating direction method of multipliers and the quadratic approximation coordination algorithm. The results show that the proposed algorithms perform better than the compared algorithms both in terms of the required number of iterations and in the number of solved benchmark problems in most cases.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"11 \",\"pages\":\"Article 100058\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440623000023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Hierarchical distributed optimization of constraint-coupled convex and mixed-integer programs using approximations of the dual function
In this paper, two new algorithms for dual decomposition-based distributed optimization are presented. Both algorithms rely on the quadratic approximation of the dual function of the primal optimization problem. The dual variables are updated in each iteration through a maximization of the approximated dual function. The first algorithm approximates the dual function by solving a regression problem, based on the values of the dual function collected from previous iterations. The second algorithm updates the parameters of the quadratic approximation via a quasi-Newton scheme. Both algorithms employ step size constraints for the update of the dual variables. Furthermore, the subgradients from previous iterations are stored in order to construct cutting planes, similar to bundle methods for nonsmooth optimization. However, instead of using the cutting planes to formulate a piece-wise linear over-approximation of the dual function, they are used to construct valid inequalities for the update step. In order to demonstrate the efficiency of the algorithms, they are evaluated on a large set of constrained quadratic, convex and mixed-integer benchmark problems and compared to the subgradient method, the bundle trust method, the alternating direction method of multipliers and the quadratic approximation coordination algorithm. The results show that the proposed algorithms perform better than the compared algorithms both in terms of the required number of iterations and in the number of solved benchmark problems in most cases.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.