通量先验估计的存在性与高变系数扩散方程迭代方法收敛性之间的联系

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
G. Kobelkov, E. Schnack
{"title":"通量先验估计的存在性与高变系数扩散方程迭代方法收敛性之间的联系","authors":"G. Kobelkov, E. Schnack","doi":"10.1515/rnam-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract An iterative method with the number of iterations independent of the coefficient jumps is proposed for the boundary value problem for a diffusion equation with highly varying coefficient. The method applies one solution of the Poisson equation at each step of iteration. In the present paper we extend the class of domains the iterative method is justified for.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connection between the existence of a priori estimate for a flux and the convergence of iterative methods for diffusion equation with highly varying coefficients\",\"authors\":\"G. Kobelkov, E. Schnack\",\"doi\":\"10.1515/rnam-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An iterative method with the number of iterations independent of the coefficient jumps is proposed for the boundary value problem for a diffusion equation with highly varying coefficient. The method applies one solution of the Poisson equation at each step of iteration. In the present paper we extend the class of domains the iterative method is justified for.\",\"PeriodicalId\":49585,\"journal\":{\"name\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2022-0012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要针对高变系数扩散方程的边值问题,提出了一种迭代次数与系数跳跃无关的迭代方法。该方法在迭代的每一步应用泊松方程的一个解。在本文中,我们扩展了迭代方法所适用的一类域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connection between the existence of a priori estimate for a flux and the convergence of iterative methods for diffusion equation with highly varying coefficients
Abstract An iterative method with the number of iterations independent of the coefficient jumps is proposed for the boundary value problem for a diffusion equation with highly varying coefficient. The method applies one solution of the Poisson equation at each step of iteration. In the present paper we extend the class of domains the iterative method is justified for.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信