登革热病毒宿主内延迟SIVA传播模型的研究

Q2 Mathematics
P. Muthu, Bikash Modak
{"title":"登革热病毒宿主内延迟SIVA传播模型的研究","authors":"P. Muthu, Bikash Modak","doi":"10.5614/cbms.2022.5.2.1","DOIUrl":null,"url":null,"abstract":"During the process of immune response to the infection caused by dengue virus, antibodies are generated by plasma cells which are produced by B-cells. In some cases, it is observed that there is a delay in the production of plasma cells from B-cells which causes a delay in the immune response. We propose a SIVA within-host model of the virus transmission with delayed immune response to articulate the dynamics of the cell and virus population. The stability analysis of different equilibrium states is also studied. The basic reproduction number (BRN) of the model is computed using next generation matrix (NGM) method. The local stability analysis is discussed using the method of linearisation. The stability conditions of the equilibrium states are validated using the Li´enard - Chipart criterion. Hopf bifurcation analysis is carried out as the system has time lag in the immune response. Three equilibrium states, namely, virus free equilibrium state, endemic equilibrium state with and without immune response, have been observed. It has been found that the virus free equilibrium state is locally asymptotically stable if BRN is less than or equal to 1. Additionally, the conditions for the stability of the endemic equilibrium points are derived and elaborated. Numerical simulations for different values of time delay parameter τ are presented and illustrated using graphs. A Hopf bifurcation is observed if the delay parameter τ crosses a threshold value and then the system becomes unstable with periodic solution. To determine the relative importance of the model parameters to the virus transmission and prevalence, sensitivity analysis of the parameters is illustrated using graphs. Due to the time lag in the immune response, an increase in the virus growth is observed in large quantity. As a result, the infection spreads more quickly within the host.","PeriodicalId":33129,"journal":{"name":"Communication in Biomathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of A Delayed SIVA Within-Host Model of Dengue Virus Transmission\",\"authors\":\"P. Muthu, Bikash Modak\",\"doi\":\"10.5614/cbms.2022.5.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the process of immune response to the infection caused by dengue virus, antibodies are generated by plasma cells which are produced by B-cells. In some cases, it is observed that there is a delay in the production of plasma cells from B-cells which causes a delay in the immune response. We propose a SIVA within-host model of the virus transmission with delayed immune response to articulate the dynamics of the cell and virus population. The stability analysis of different equilibrium states is also studied. The basic reproduction number (BRN) of the model is computed using next generation matrix (NGM) method. The local stability analysis is discussed using the method of linearisation. The stability conditions of the equilibrium states are validated using the Li´enard - Chipart criterion. Hopf bifurcation analysis is carried out as the system has time lag in the immune response. Three equilibrium states, namely, virus free equilibrium state, endemic equilibrium state with and without immune response, have been observed. It has been found that the virus free equilibrium state is locally asymptotically stable if BRN is less than or equal to 1. Additionally, the conditions for the stability of the endemic equilibrium points are derived and elaborated. Numerical simulations for different values of time delay parameter τ are presented and illustrated using graphs. A Hopf bifurcation is observed if the delay parameter τ crosses a threshold value and then the system becomes unstable with periodic solution. To determine the relative importance of the model parameters to the virus transmission and prevalence, sensitivity analysis of the parameters is illustrated using graphs. Due to the time lag in the immune response, an increase in the virus growth is observed in large quantity. As a result, the infection spreads more quickly within the host.\",\"PeriodicalId\":33129,\"journal\":{\"name\":\"Communication in Biomathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communication in Biomathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/cbms.2022.5.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication in Biomathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/cbms.2022.5.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在对登革热病毒感染的免疫应答过程中,抗体由浆细胞产生,浆细胞由b细胞产生。在某些情况下,可以观察到b细胞产生浆细胞的延迟,从而导致免疫反应的延迟。我们提出了一个具有延迟免疫反应的病毒传播的宿主内SIVA模型,以阐明细胞和病毒群体的动力学。研究了不同平衡状态下的稳定性分析。采用下一代矩阵(NGM)法计算模型的基本再现数(BRN)。用线性化方法讨论了局部稳定性分析。利用Li ' enard - Chipart准则验证了平衡态的稳定性条件。针对系统免疫反应存在时滞,进行Hopf分岔分析。观察到三种平衡状态,即无病毒平衡状态、有免疫反应和无免疫反应的地方性平衡状态。发现当BRN小于等于1时,无病毒平衡状态是局部渐近稳定的。此外,还推导并阐述了地方性平衡点稳定的条件。给出了不同时滞参数τ值的数值模拟,并用图形说明。当时滞参数τ越过一个阈值时,系统出现Hopf分岔,此时系统具有周期解而变得不稳定。为了确定模型参数对病毒传播和流行的相对重要性,使用图形说明了参数的敏感性分析。由于免疫反应的时间滞后,大量观察到病毒生长的增加。因此,感染在宿主体内传播得更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of A Delayed SIVA Within-Host Model of Dengue Virus Transmission
During the process of immune response to the infection caused by dengue virus, antibodies are generated by plasma cells which are produced by B-cells. In some cases, it is observed that there is a delay in the production of plasma cells from B-cells which causes a delay in the immune response. We propose a SIVA within-host model of the virus transmission with delayed immune response to articulate the dynamics of the cell and virus population. The stability analysis of different equilibrium states is also studied. The basic reproduction number (BRN) of the model is computed using next generation matrix (NGM) method. The local stability analysis is discussed using the method of linearisation. The stability conditions of the equilibrium states are validated using the Li´enard - Chipart criterion. Hopf bifurcation analysis is carried out as the system has time lag in the immune response. Three equilibrium states, namely, virus free equilibrium state, endemic equilibrium state with and without immune response, have been observed. It has been found that the virus free equilibrium state is locally asymptotically stable if BRN is less than or equal to 1. Additionally, the conditions for the stability of the endemic equilibrium points are derived and elaborated. Numerical simulations for different values of time delay parameter τ are presented and illustrated using graphs. A Hopf bifurcation is observed if the delay parameter τ crosses a threshold value and then the system becomes unstable with periodic solution. To determine the relative importance of the model parameters to the virus transmission and prevalence, sensitivity analysis of the parameters is illustrated using graphs. Due to the time lag in the immune response, an increase in the virus growth is observed in large quantity. As a result, the infection spreads more quickly within the host.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communication in Biomathematical Sciences
Communication in Biomathematical Sciences Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信