Pravalika Butreddy, Selina Laws, Premitha Pansalawatte, E. Laws, H. Rathnayake
{"title":"叶酸的超分子化学——实验与计算研究","authors":"Pravalika Butreddy, Selina Laws, Premitha Pansalawatte, E. Laws, H. Rathnayake","doi":"10.1142/s1793048021500053","DOIUrl":null,"url":null,"abstract":"Supramolecular chemistry of folic acid is studied and revealed by exploring its assembly and disassembly process in a liquid–liquid interface. Experimental and computational studies are conducted to understand the interfacial interactions of folic acid in a oil-in-water interface by investigating the role of folic acid’s critical aggregation concentration (CAC), molecular arrangement, and intermolecular interactions at the molecular level. The folic acid’s CAC, determined from the concentration-dependent UV–vis absorption spectra in water/methanol solvent system, is found to be 2.72[Formula: see text][Formula: see text]M. The sigmoidal behavior of folic acid’s maximum absorbances with respect to different folic acid concentrations reveals the nature of the self-assembly dynamics and aggregative assemblies’ formation by three signature phases, in which CAC lies in the second phase — the growth phase. The computational studies reveal the intermolecular interactions and molecular orientation of folic acid molecules. They interact each other via H2-bonding between carboxylic acid groups in two glutamate units and two amine groups in pteridine units and [Formula: see text]–[Formula: see text] interactions between pteridine units and phenyl units, orienting two units in a parallel stacked arrangement. Correlating the computed intermolecular interactions and structural orientation of folic acid with its solid-state crystal packing structure has provided strong evidence supporting its supramolecular chemistry and assembly dynamics to make nanoassemblies in a liquid–liquid interface.","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular Chemistry of Folic Acid — Experimental and Computational Investigation\",\"authors\":\"Pravalika Butreddy, Selina Laws, Premitha Pansalawatte, E. Laws, H. Rathnayake\",\"doi\":\"10.1142/s1793048021500053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supramolecular chemistry of folic acid is studied and revealed by exploring its assembly and disassembly process in a liquid–liquid interface. Experimental and computational studies are conducted to understand the interfacial interactions of folic acid in a oil-in-water interface by investigating the role of folic acid’s critical aggregation concentration (CAC), molecular arrangement, and intermolecular interactions at the molecular level. The folic acid’s CAC, determined from the concentration-dependent UV–vis absorption spectra in water/methanol solvent system, is found to be 2.72[Formula: see text][Formula: see text]M. The sigmoidal behavior of folic acid’s maximum absorbances with respect to different folic acid concentrations reveals the nature of the self-assembly dynamics and aggregative assemblies’ formation by three signature phases, in which CAC lies in the second phase — the growth phase. The computational studies reveal the intermolecular interactions and molecular orientation of folic acid molecules. They interact each other via H2-bonding between carboxylic acid groups in two glutamate units and two amine groups in pteridine units and [Formula: see text]–[Formula: see text] interactions between pteridine units and phenyl units, orienting two units in a parallel stacked arrangement. Correlating the computed intermolecular interactions and structural orientation of folic acid with its solid-state crystal packing structure has provided strong evidence supporting its supramolecular chemistry and assembly dynamics to make nanoassemblies in a liquid–liquid interface.\",\"PeriodicalId\":88835,\"journal\":{\"name\":\"Biophysical reviews and letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews and letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793048021500053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793048021500053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supramolecular Chemistry of Folic Acid — Experimental and Computational Investigation
Supramolecular chemistry of folic acid is studied and revealed by exploring its assembly and disassembly process in a liquid–liquid interface. Experimental and computational studies are conducted to understand the interfacial interactions of folic acid in a oil-in-water interface by investigating the role of folic acid’s critical aggregation concentration (CAC), molecular arrangement, and intermolecular interactions at the molecular level. The folic acid’s CAC, determined from the concentration-dependent UV–vis absorption spectra in water/methanol solvent system, is found to be 2.72[Formula: see text][Formula: see text]M. The sigmoidal behavior of folic acid’s maximum absorbances with respect to different folic acid concentrations reveals the nature of the self-assembly dynamics and aggregative assemblies’ formation by three signature phases, in which CAC lies in the second phase — the growth phase. The computational studies reveal the intermolecular interactions and molecular orientation of folic acid molecules. They interact each other via H2-bonding between carboxylic acid groups in two glutamate units and two amine groups in pteridine units and [Formula: see text]–[Formula: see text] interactions between pteridine units and phenyl units, orienting two units in a parallel stacked arrangement. Correlating the computed intermolecular interactions and structural orientation of folic acid with its solid-state crystal packing structure has provided strong evidence supporting its supramolecular chemistry and assembly dynamics to make nanoassemblies in a liquid–liquid interface.