无卖空约束下最优均值方差投资组合选择

IF 0.5 Q4 BUSINESS, FINANCE
Jingsi Xu
{"title":"无卖空约束下最优均值方差投资组合选择","authors":"Jingsi Xu","doi":"10.1142/s0219024920500545","DOIUrl":null,"url":null,"abstract":"In this paper, the objective is to study the continuous mean–variance portfolio selection with a no-short-selling constraint and obtain a time-consistent solution. We assume that there is a self-financing portfolio with wealth process [Formula: see text], in which [Formula: see text] represents the fraction of wealth invested in the risk asset under the short selling prohibition. We investigate the mean–variance optimal constrained problem defined by obtaining the supremum over all admissible controls of the difference between the expectation of the value process at some designated terminal time [Formula: see text] and a positive constant times the variance of [Formula: see text]. To envisage the quadratic nonlinearity introduced by the variance, the method of Lagrangian multipliers reduces the nonlinear problem into a set of linear problems which can be solved by applying the Hamilton–Jacobi–Bellman equation and change of variables formula with local time on curves. Solving the HJB system provides the time-inconsistent solution and from there, we derive the time-consistent optimal control.","PeriodicalId":47022,"journal":{"name":"International Journal of Theoretical and Applied Finance","volume":"1 1","pages":"2050054"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPTIMAL MEAN–VARIANCE PORTFOLIO SELECTION WITH NO-SHORT-SELLING CONSTRAINT\",\"authors\":\"Jingsi Xu\",\"doi\":\"10.1142/s0219024920500545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the objective is to study the continuous mean–variance portfolio selection with a no-short-selling constraint and obtain a time-consistent solution. We assume that there is a self-financing portfolio with wealth process [Formula: see text], in which [Formula: see text] represents the fraction of wealth invested in the risk asset under the short selling prohibition. We investigate the mean–variance optimal constrained problem defined by obtaining the supremum over all admissible controls of the difference between the expectation of the value process at some designated terminal time [Formula: see text] and a positive constant times the variance of [Formula: see text]. To envisage the quadratic nonlinearity introduced by the variance, the method of Lagrangian multipliers reduces the nonlinear problem into a set of linear problems which can be solved by applying the Hamilton–Jacobi–Bellman equation and change of variables formula with local time on curves. Solving the HJB system provides the time-inconsistent solution and from there, we derive the time-consistent optimal control.\",\"PeriodicalId\":47022,\"journal\":{\"name\":\"International Journal of Theoretical and Applied Finance\",\"volume\":\"1 1\",\"pages\":\"2050054\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical and Applied Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219024920500545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical and Applied Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219024920500545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究无卖空约束下的连续均值-方差投资组合问题,并得到其时间一致解。我们假设存在一个具有财富过程的自我融资投资组合[公式:见文],其中[公式:见文]表示在卖空禁令下投资于风险资产的财富比例。我们研究了均值-方差最优约束问题,该问题的定义是在指定的终端时间[公式:见文]与[公式:见文]的正常数乘以方差之间的差的所有允许控制的最优值。为了考虑由方差引入的二次非线性,拉格朗日乘子法将非线性问题简化为一组线性问题,这些线性问题可以应用Hamilton-Jacobi-Bellman方程和曲线上具有局部时间的变量变换公式来求解。求解HJB系统给出了时间不一致的解,并由此导出了时间一致的最优控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTIMAL MEAN–VARIANCE PORTFOLIO SELECTION WITH NO-SHORT-SELLING CONSTRAINT
In this paper, the objective is to study the continuous mean–variance portfolio selection with a no-short-selling constraint and obtain a time-consistent solution. We assume that there is a self-financing portfolio with wealth process [Formula: see text], in which [Formula: see text] represents the fraction of wealth invested in the risk asset under the short selling prohibition. We investigate the mean–variance optimal constrained problem defined by obtaining the supremum over all admissible controls of the difference between the expectation of the value process at some designated terminal time [Formula: see text] and a positive constant times the variance of [Formula: see text]. To envisage the quadratic nonlinearity introduced by the variance, the method of Lagrangian multipliers reduces the nonlinear problem into a set of linear problems which can be solved by applying the Hamilton–Jacobi–Bellman equation and change of variables formula with local time on curves. Solving the HJB system provides the time-inconsistent solution and from there, we derive the time-consistent optimal control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
28
期刊介绍: The shift of the financial market towards the general use of advanced mathematical methods has led to the introduction of state-of-the-art quantitative tools into the world of finance. The International Journal of Theoretical and Applied Finance (IJTAF) brings together international experts involved in the mathematical modelling of financial instruments as well as the application of these models to global financial markets. The development of complex financial products has led to new challenges to the regulatory bodies. Financial instruments that have been designed to serve the needs of the mature capitals market need to be adapted for application in the emerging markets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信