负两手结和半康威多项式

IF 1.3 2区 数学 Q1 MATHEMATICS
Keegan Boyle, Wenzhao Chen
{"title":"负两手结和半康威多项式","authors":"Keegan Boyle, Wenzhao Chen","doi":"10.4171/rmi/1442","DOIUrl":null,"url":null,"abstract":"In 1979, Hartley and Kawauchi proved that the Conway polynomial of a strongly negative amphichiral knot factors as $f(z)f(-z)$. In this paper, we normalize the factor $f(z)$ to define the half-Conway polynomial. First, we prove that the half-Conway polynomial satisfies an equivariant skein relation, giving the first feasible computational method, which we use to compute the half-Conway polynomial for knots with 12 or fewer crossings. This skein relation also leads to a diagrammatic interpretation of the degree-one coefficient, from which we obtain a lower bound on the equivariant unknotting number. Second, we completely characterize polynomials arising as half-Conway polynomials of knots in $S^3$, answering a problem of Hartley-Kawauchi. As a special case, we construct the first examples of non-slice strongly negative amphichiral knots with determinant one, answering a question of Manolescu. The double branched covers of these knots provide potentially non-trivial torsion elements in the homology cobordism group.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Negative amphichiral knots and the half-Conway polynomial\",\"authors\":\"Keegan Boyle, Wenzhao Chen\",\"doi\":\"10.4171/rmi/1442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1979, Hartley and Kawauchi proved that the Conway polynomial of a strongly negative amphichiral knot factors as $f(z)f(-z)$. In this paper, we normalize the factor $f(z)$ to define the half-Conway polynomial. First, we prove that the half-Conway polynomial satisfies an equivariant skein relation, giving the first feasible computational method, which we use to compute the half-Conway polynomial for knots with 12 or fewer crossings. This skein relation also leads to a diagrammatic interpretation of the degree-one coefficient, from which we obtain a lower bound on the equivariant unknotting number. Second, we completely characterize polynomials arising as half-Conway polynomials of knots in $S^3$, answering a problem of Hartley-Kawauchi. As a special case, we construct the first examples of non-slice strongly negative amphichiral knots with determinant one, answering a question of Manolescu. The double branched covers of these knots provide potentially non-trivial torsion elements in the homology cobordism group.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1442\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

1979年,Hartley和Kawauchi证明了强负双手结因子的Conway多项式为$f(z)f(-z)$。在本文中,我们将因子f(z)$归一化以定义半康威多项式。首先,我们证明了半康威多项式满足一个等变绞结关系,给出了第一个可行的计算方法,我们用它来计算结的半康威多项式的12或更少的交叉点。这种绞结关系也导致了一级系数的图解解释,从中我们得到了等变解结数的下界。其次,我们完整地描述了$S^3$中结点的半conway多项式,回答了Hartley-Kawauchi问题。作为一种特殊情况,我们构造了行列式为1的非片强负双手结的第一个例子,回答了Manolescu的一个问题。这些结的双分支盖在同调配群中提供了潜在的非平凡扭转元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Negative amphichiral knots and the half-Conway polynomial
In 1979, Hartley and Kawauchi proved that the Conway polynomial of a strongly negative amphichiral knot factors as $f(z)f(-z)$. In this paper, we normalize the factor $f(z)$ to define the half-Conway polynomial. First, we prove that the half-Conway polynomial satisfies an equivariant skein relation, giving the first feasible computational method, which we use to compute the half-Conway polynomial for knots with 12 or fewer crossings. This skein relation also leads to a diagrammatic interpretation of the degree-one coefficient, from which we obtain a lower bound on the equivariant unknotting number. Second, we completely characterize polynomials arising as half-Conway polynomials of knots in $S^3$, answering a problem of Hartley-Kawauchi. As a special case, we construct the first examples of non-slice strongly negative amphichiral knots with determinant one, answering a question of Manolescu. The double branched covers of these knots provide potentially non-trivial torsion elements in the homology cobordism group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信