速度与压力梯度点正交的理想不可压缩流体的稳态流动

Q3 Mathematics
Vladimir Yu. Rovenski, Vladimir A. Sharafutdinov
{"title":"速度与压力梯度点正交的理想不可压缩流体的稳态流动","authors":"Vladimir Yu. Rovenski,&nbsp;Vladimir A. Sharafutdinov","doi":"10.1007/s40598-023-00234-5","DOIUrl":null,"url":null,"abstract":"<div><p>A new important relation between fluid mechanics and differential geometry is established. We study smooth steady solutions to the Euler equations with the additional property: the velocity vector is orthogonal to the gradient of the pressure at any point. Such solutions are called Gavrilov flows. We describe the local structure of Gavrilov flows in terms of the geometry of isobaric hypersurfaces. In the 3D case, we obtain a system of PDEs for axisymmetric Gavrilov flows and find consistency conditions for the system. Two numerical examples of axisymmetric Gavrilov flows are presented: with pressure function periodic in the axial direction, and with isobaric surfaces diffeomorphic to the torus.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"10 2","pages":"223 - 256"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady-State Flows of Ideal Incompressible Fluid with Velocity Pointwise Orthogonal to the Pressure Gradient\",\"authors\":\"Vladimir Yu. Rovenski,&nbsp;Vladimir A. Sharafutdinov\",\"doi\":\"10.1007/s40598-023-00234-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new important relation between fluid mechanics and differential geometry is established. We study smooth steady solutions to the Euler equations with the additional property: the velocity vector is orthogonal to the gradient of the pressure at any point. Such solutions are called Gavrilov flows. We describe the local structure of Gavrilov flows in terms of the geometry of isobaric hypersurfaces. In the 3D case, we obtain a system of PDEs for axisymmetric Gavrilov flows and find consistency conditions for the system. Two numerical examples of axisymmetric Gavrilov flows are presented: with pressure function periodic in the axial direction, and with isobaric surfaces diffeomorphic to the torus.</p></div>\",\"PeriodicalId\":37546,\"journal\":{\"name\":\"Arnold Mathematical Journal\",\"volume\":\"10 2\",\"pages\":\"223 - 256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arnold Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40598-023-00234-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arnold Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40598-023-00234-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在流体力学和微分几何学之间建立了一种新的重要关系。我们研究了欧拉方程的平滑稳定解,这些解具有一个附加特性:速度矢量与任意点的压力梯度正交。这种解称为加夫里洛夫流。我们从等压超曲面的几何角度描述了加夫里洛夫流的局部结构。在三维情况下,我们得到了轴对称加夫里洛夫流的 PDEs 系统,并找到了该系统的一致性条件。我们给出了轴对称加夫里洛夫流的两个数值示例:轴向周期性压力函数和等压超曲面与环面差分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Steady-State Flows of Ideal Incompressible Fluid with Velocity Pointwise Orthogonal to the Pressure Gradient

Steady-State Flows of Ideal Incompressible Fluid with Velocity Pointwise Orthogonal to the Pressure Gradient

A new important relation between fluid mechanics and differential geometry is established. We study smooth steady solutions to the Euler equations with the additional property: the velocity vector is orthogonal to the gradient of the pressure at any point. Such solutions are called Gavrilov flows. We describe the local structure of Gavrilov flows in terms of the geometry of isobaric hypersurfaces. In the 3D case, we obtain a system of PDEs for axisymmetric Gavrilov flows and find consistency conditions for the system. Two numerical examples of axisymmetric Gavrilov flows are presented: with pressure function periodic in the axial direction, and with isobaric surfaces diffeomorphic to the torus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arnold Mathematical Journal
Arnold Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.50
自引率
0.00%
发文量
28
期刊介绍: The Arnold Mathematical Journal publishes interesting and understandable results in all areas of mathematics. The name of the journal is not only a dedication to the memory of Vladimir Arnold (1937 – 2010), one of the most influential mathematicians of the 20th century, but also a declaration that the journal should serve to maintain and promote the scientific style characteristic for Arnold''s best mathematical works. Features of AMJ publications include: Popularity. The journal articles should be accessible to a very wide community of mathematicians. Not only formal definitions necessary for the understanding must be provided but also informal motivations even if the latter are well-known to the experts in the field. Interdisciplinary and multidisciplinary mathematics. AMJ publishes research expositions that connect different mathematical subjects. Connections that are useful in both ways are of particular importance. Multidisciplinary research (even if the disciplines all belong to pure mathematics) is generally hard to evaluate, for this reason, this kind of research is often under-represented in specialized mathematical journals. AMJ will try to compensate for this.Problems, objectives, work in progress. Most scholarly publications present results of a research project in their “final'' form, in which all posed questions are answered. Some open questions and conjectures may be even mentioned, but the very process of mathematical discovery remains hidden. Following Arnold, publications in AMJ will try to unhide this process and made it public by encouraging the authors to include informal discussion of their motivation, possibly unsuccessful lines of attack, experimental data and close by research directions. AMJ publishes well-motivated research problems on a regular basis.  Problems do not need to be original; an old problem with a new and exciting motivation is worth re-stating. Following Arnold''s principle, a general formulation is less desirable than the simplest partial case that is still unknown.Being interesting. The most important requirement is that the article be interesting. It does not have to be limited by original research contributions of the author; however, the author''s responsibility is to carefully acknowledge the authorship of all results. Neither does the article need to consist entirely of formal and rigorous arguments. It can contain parts, in which an informal author''s understanding of the overall picture is presented; however, these parts must be clearly indicated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信