多伦多港的水循环

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Bogdan Hlevca, M. Wells, Liset Cruz Font, S. Doka, R. Portiss, Margaretha A. St. John, S. Cooke
{"title":"多伦多港的水循环","authors":"Bogdan Hlevca, M. Wells, Liset Cruz Font, S. Doka, R. Portiss, Margaretha A. St. John, S. Cooke","doi":"10.1080/14634988.2018.1500059","DOIUrl":null,"url":null,"abstract":"We present an overview of physical processes that drive water circulation within the extended system of coastal embayments in the Toronto Harbour. The different water circulation patterns occur at various spatial and temporal scales, and our article provides context for the various efforts to improve water quality by the Toronto and Region Remedial Action Plan. Velocity profiles and water level measurements showed that the harbour’s Helmholtz pumping mode drives a 1-h period oscillation, which can influence flushing of the shallow embayments. This process likely persists year-round and would lead to flushing time-scales of between 1–11 days for these shallow embayments. If this ubiquitous pumping is combined with solar heat fluxes, it partially explains the persistent temperature gradients amongst the shallow embayments. In the larger and deeper (∼10 m) Inner Harbour, the prevailing westerly winds drive most of the mean circulation, with a current entering through the Western Gap and leaving through the Eastern Gap. This wind driven circulation leads to a residence time of water in the Inner Harbour between 7–14 days. In addition, periodic strong and sustained westerly winds can induce frequent upwelling events in Lake Ontario (between 4 to 10 times during the stratified season) that mildly increase the exchange flow and help maintain good water quality by exchange nearshore waters with cleaner hypolimentic waters. The intrusion of cold water into the harbour can also lead to highly variable temperature regimes with sudden drops in temperature that could have negative effects on aquatic organisms.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"21 1","pages":"234 - 244"},"PeriodicalIF":0.8000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14634988.2018.1500059","citationCount":"14","resultStr":"{\"title\":\"Water circulation in Toronto Harbour\",\"authors\":\"Bogdan Hlevca, M. Wells, Liset Cruz Font, S. Doka, R. Portiss, Margaretha A. St. John, S. Cooke\",\"doi\":\"10.1080/14634988.2018.1500059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an overview of physical processes that drive water circulation within the extended system of coastal embayments in the Toronto Harbour. The different water circulation patterns occur at various spatial and temporal scales, and our article provides context for the various efforts to improve water quality by the Toronto and Region Remedial Action Plan. Velocity profiles and water level measurements showed that the harbour’s Helmholtz pumping mode drives a 1-h period oscillation, which can influence flushing of the shallow embayments. This process likely persists year-round and would lead to flushing time-scales of between 1–11 days for these shallow embayments. If this ubiquitous pumping is combined with solar heat fluxes, it partially explains the persistent temperature gradients amongst the shallow embayments. In the larger and deeper (∼10 m) Inner Harbour, the prevailing westerly winds drive most of the mean circulation, with a current entering through the Western Gap and leaving through the Eastern Gap. This wind driven circulation leads to a residence time of water in the Inner Harbour between 7–14 days. In addition, periodic strong and sustained westerly winds can induce frequent upwelling events in Lake Ontario (between 4 to 10 times during the stratified season) that mildly increase the exchange flow and help maintain good water quality by exchange nearshore waters with cleaner hypolimentic waters. The intrusion of cold water into the harbour can also lead to highly variable temperature regimes with sudden drops in temperature that could have negative effects on aquatic organisms.\",\"PeriodicalId\":8125,\"journal\":{\"name\":\"Aquatic Ecosystem Health & Management\",\"volume\":\"21 1\",\"pages\":\"234 - 244\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14634988.2018.1500059\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Ecosystem Health & Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/14634988.2018.1500059\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Ecosystem Health & Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/14634988.2018.1500059","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 14

摘要

我们概述了推动多伦多港沿海海湾扩展系统内水循环的物理过程。不同的水循环模式发生在不同的空间和时间尺度上,我们的文章为多伦多和地区补救行动计划为改善水质所做的各种努力提供了背景。速度剖面和水位测量表明,港口的亥姆霍兹泵送模式会驱动1小时的周期振荡,这会影响浅水湾的冲刷。这一过程可能全年持续,并将导致这些浅水湾的冲刷时间在1-11天之间。如果这种普遍存在的泵送与太阳热通量相结合,它可以部分解释浅层海湾中持续存在的温度梯度。在更大、更深(~10米)的内港,盛行的西风驱动了大部分平均环流,气流通过西部缺口进入,然后通过东部缺口离开。这种风驱动的环流导致水在内港的停留时间在7-14天之间。此外,周期性的强持续西风会在安大略湖引发频繁的上升流事件(在分层季节发生4到10次),这会温和地增加交换流量,并通过将近岸水域与更清洁的低盐度水域交换来帮助保持良好的水质。冷水入侵港口也会导致温度高度变化,温度突然下降,这可能会对水生生物产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water circulation in Toronto Harbour
We present an overview of physical processes that drive water circulation within the extended system of coastal embayments in the Toronto Harbour. The different water circulation patterns occur at various spatial and temporal scales, and our article provides context for the various efforts to improve water quality by the Toronto and Region Remedial Action Plan. Velocity profiles and water level measurements showed that the harbour’s Helmholtz pumping mode drives a 1-h period oscillation, which can influence flushing of the shallow embayments. This process likely persists year-round and would lead to flushing time-scales of between 1–11 days for these shallow embayments. If this ubiquitous pumping is combined with solar heat fluxes, it partially explains the persistent temperature gradients amongst the shallow embayments. In the larger and deeper (∼10 m) Inner Harbour, the prevailing westerly winds drive most of the mean circulation, with a current entering through the Western Gap and leaving through the Eastern Gap. This wind driven circulation leads to a residence time of water in the Inner Harbour between 7–14 days. In addition, periodic strong and sustained westerly winds can induce frequent upwelling events in Lake Ontario (between 4 to 10 times during the stratified season) that mildly increase the exchange flow and help maintain good water quality by exchange nearshore waters with cleaner hypolimentic waters. The intrusion of cold water into the harbour can also lead to highly variable temperature regimes with sudden drops in temperature that could have negative effects on aquatic organisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Ecosystem Health & Management
Aquatic Ecosystem Health & Management 环境科学-海洋与淡水生物学
CiteScore
1.70
自引率
0.00%
发文量
1
审稿时长
18-36 weeks
期刊介绍: The journal publishes articles on the following themes and topics: • Original articles focusing on ecosystem-based sciences, ecosystem health and management of marine and aquatic ecosystems • Reviews, invited perspectives and keynote contributions from conferences • Special issues on important emerging topics, themes, and ecosystems (climate change, invasive species, HABs, risk assessment, models)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信