有限树上的等连续映射

Pub Date : 2020-05-30 DOI:10.4064/FM923-9-2020
G. Acosta, David J. Fernández-Bretón
{"title":"有限树上的等连续映射","authors":"G. Acosta, David J. Fernández-Bretón","doi":"10.4064/FM923-9-2020","DOIUrl":null,"url":null,"abstract":"If $X$ is a finite tree and $f \\colon X \\longrightarrow X$ is a continuous function, as the Main Theorem of this paper (Theorem 8), we find eight conditions, each of which is equivalent to the fact that $f$ is equicontinuous. Our results either generalize ones shown by Vidal-Escobar and Garcia-Ferreira, or complement those of Bruckner and Ceder, Mai and Camargo, Rincon and Uzcategui. Some of the methods, however, have not been used previously in this context (for example, in one of our proofs we apply the Ramsey-theoretic result known as Hindman's theorem). To name just a few of the results obtained: the equicontinuity of $f$ is equivalent to the fact that there is no arc $A \\subseteq X$ satisfying $A \\subsetneq f^n[A]$ for some $n\\in \\mathbb{N}$. It is also equivalent to the fact that for some nonprincial ultrafilter $u$, the function $f^u \\colon X \\longrightarrow X$ is continuous (in other words, failure of equicontinuity of $f$ is equivalent to the failure of continuity of every element of the Ellis remainder $E^*(X,f)$).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Equicontinuous mappings on finite trees\",\"authors\":\"G. Acosta, David J. Fernández-Bretón\",\"doi\":\"10.4064/FM923-9-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If $X$ is a finite tree and $f \\\\colon X \\\\longrightarrow X$ is a continuous function, as the Main Theorem of this paper (Theorem 8), we find eight conditions, each of which is equivalent to the fact that $f$ is equicontinuous. Our results either generalize ones shown by Vidal-Escobar and Garcia-Ferreira, or complement those of Bruckner and Ceder, Mai and Camargo, Rincon and Uzcategui. Some of the methods, however, have not been used previously in this context (for example, in one of our proofs we apply the Ramsey-theoretic result known as Hindman's theorem). To name just a few of the results obtained: the equicontinuity of $f$ is equivalent to the fact that there is no arc $A \\\\subseteq X$ satisfying $A \\\\subsetneq f^n[A]$ for some $n\\\\in \\\\mathbb{N}$. It is also equivalent to the fact that for some nonprincial ultrafilter $u$, the function $f^u \\\\colon X \\\\longrightarrow X$ is continuous (in other words, failure of equicontinuity of $f$ is equivalent to the failure of continuity of every element of the Ellis remainder $E^*(X,f)$).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/FM923-9-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/FM923-9-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如果$X$是有限树,$f\colon X\longrightarrow X$是连续函数,作为本文的主要定理(定理8),我们发现了八个条件,每个条件等价于$f$是等连续的。我们的结果要么推广了Vidal Escobar和Garcia Ferreira的结果,要么补充了Bruckner和Ceder、Mai和Camargo、Rincon和Uzcategui的结果。然而,有些方法以前没有在这种情况下使用过(例如,在我们的一个证明中,我们应用了拉姆齐理论结果,即Hindman定理)。仅举几个得到的结果:$f$的等连续性等价于这样一个事实,即对于一些$n\in\mathbb{n}$,不存在满足$a\substeq f^n[a]$的弧$a\ssubsteq X$。它也等价于这样一个事实:对于一些非princial超滤子$u$,函数$f^u\coloneX\longrightarrowX$是连续的(换句话说,$f$的等连续性失效等价于Ellis余数$E^*(X,f)$的每个元素的连续性失效)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equicontinuous mappings on finite trees
If $X$ is a finite tree and $f \colon X \longrightarrow X$ is a continuous function, as the Main Theorem of this paper (Theorem 8), we find eight conditions, each of which is equivalent to the fact that $f$ is equicontinuous. Our results either generalize ones shown by Vidal-Escobar and Garcia-Ferreira, or complement those of Bruckner and Ceder, Mai and Camargo, Rincon and Uzcategui. Some of the methods, however, have not been used previously in this context (for example, in one of our proofs we apply the Ramsey-theoretic result known as Hindman's theorem). To name just a few of the results obtained: the equicontinuity of $f$ is equivalent to the fact that there is no arc $A \subseteq X$ satisfying $A \subsetneq f^n[A]$ for some $n\in \mathbb{N}$. It is also equivalent to the fact that for some nonprincial ultrafilter $u$, the function $f^u \colon X \longrightarrow X$ is continuous (in other words, failure of equicontinuity of $f$ is equivalent to the failure of continuity of every element of the Ellis remainder $E^*(X,f)$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信