在实验室微型流动回路中,作为抑制天然气水合物的本地来源表面活性剂的栀子科植物的实验室评价

IF 0.125
Virtue Urunwo Elechi, Sunday Sunday Ikiensikimama, Joseph Atubokiki Ajienka, Onyewuchi Emmanuel Akaranta, Okon Efiong Okon
{"title":"在实验室微型流动回路中,作为抑制天然气水合物的本地来源表面活性剂的栀子科植物的实验室评价","authors":"Virtue Urunwo Elechi,&nbsp;Sunday Sunday Ikiensikimama,&nbsp;Joseph Atubokiki Ajienka,&nbsp;Onyewuchi Emmanuel Akaranta,&nbsp;Okon Efiong Okon","doi":"10.1007/s13203-021-00275-x","DOIUrl":null,"url":null,"abstract":"<div><p>The oil and gas business is serious business and involves millions of dollars so whatever mitigates flow assurance is taken seriously. One of such things is natural gas hydrates. Hydrates are crystalline solids formed when water under low temperatures and high pressures encapsulated natural gases (C<sub>1</sub>–C<sub>4</sub>). They form blockages and impede the flow of gas which can lead to the loss of millions of dollars and at times lead to personnel death. Mitigation of gas hydrates has always been with chemicals especially for areas like deep offshore where accessibility is difficult. The chemicals that are in use currently are generally synthetic, expensive and hazardous to lives and environment hence the need for readily available locally sourced materials that are eco-friendly. This study considers and screens a locally sourced surfactant from the plant family caricaceae’ Extract (CE) as a gas hydrate inhibitor in a locally fabricated 39.4-inch mini flow loop of ½ inch internal diameter (ID) which mimics the offshore environment. Various pressure plots (pressure versus time, initial and final pressure versus time and change in pressure versus time) show that the CE performed better than MEG with percentage volumes of gas left in the system for 0.01–0.05 wt% of the extract having values that ranged from 76.7 to 87.33, while volume left for MEG ranged between 70 and 74.67% (1–5 wt%). The CE performed better in small doses compared to those of MEG, in all weight percentages of study. Furthermore, the inhibition capacities which show the level of performance of the inhibitors was also used as a measure of inhibition for both inhibitors. The CE inhibited systems had values of 69.3, 80.7, 78.07, 79.82, and 83.3%, while that of the MEG inhibited system was 60.53, 55.26, 73.68, 72.81, and 66.67% for the various weight percentages considered. The CE should be developed as gas hydrate inhibitors due to its effectiveness and eco-friendliness.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 3","pages":"295 - 303"},"PeriodicalIF":0.1250,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00275-x","citationCount":"2","resultStr":"{\"title\":\"Laboratory evaluation of caricaceae plant as a locally sourced surfactant for gas hydrate inhibition in a laboratory mini flow loop\",\"authors\":\"Virtue Urunwo Elechi,&nbsp;Sunday Sunday Ikiensikimama,&nbsp;Joseph Atubokiki Ajienka,&nbsp;Onyewuchi Emmanuel Akaranta,&nbsp;Okon Efiong Okon\",\"doi\":\"10.1007/s13203-021-00275-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The oil and gas business is serious business and involves millions of dollars so whatever mitigates flow assurance is taken seriously. One of such things is natural gas hydrates. Hydrates are crystalline solids formed when water under low temperatures and high pressures encapsulated natural gases (C<sub>1</sub>–C<sub>4</sub>). They form blockages and impede the flow of gas which can lead to the loss of millions of dollars and at times lead to personnel death. Mitigation of gas hydrates has always been with chemicals especially for areas like deep offshore where accessibility is difficult. The chemicals that are in use currently are generally synthetic, expensive and hazardous to lives and environment hence the need for readily available locally sourced materials that are eco-friendly. This study considers and screens a locally sourced surfactant from the plant family caricaceae’ Extract (CE) as a gas hydrate inhibitor in a locally fabricated 39.4-inch mini flow loop of ½ inch internal diameter (ID) which mimics the offshore environment. Various pressure plots (pressure versus time, initial and final pressure versus time and change in pressure versus time) show that the CE performed better than MEG with percentage volumes of gas left in the system for 0.01–0.05 wt% of the extract having values that ranged from 76.7 to 87.33, while volume left for MEG ranged between 70 and 74.67% (1–5 wt%). The CE performed better in small doses compared to those of MEG, in all weight percentages of study. Furthermore, the inhibition capacities which show the level of performance of the inhibitors was also used as a measure of inhibition for both inhibitors. The CE inhibited systems had values of 69.3, 80.7, 78.07, 79.82, and 83.3%, while that of the MEG inhibited system was 60.53, 55.26, 73.68, 72.81, and 66.67% for the various weight percentages considered. The CE should be developed as gas hydrate inhibitors due to its effectiveness and eco-friendliness.</p></div>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"11 3\",\"pages\":\"295 - 303\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-021-00275-x\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-021-00275-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00275-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

石油和天然气业务是一项严肃的业务,涉及数百万美元,因此无论如何都要认真对待流动保障。其中之一就是天然气水合物。水合物是水在低温高压下包裹天然气(C1-C4)时形成的结晶固体。它们会形成堵塞,阻碍气体的流动,这可能导致数百万美元的损失,有时还会导致人员死亡。减少天然气水合物的使用一直是化学品,特别是在难以进入的深海地区。目前使用的化学品一般都是合成的,价格昂贵,对生命和环境有害,因此需要就地取材的环保材料。本研究考虑并筛选了一种来自植物科提取物(CE)的本地表面活性剂,作为天然气水合物抑制剂,用于模拟海上环境的本地制造的39.4英寸内径为1 / 2英寸(ID)的微型流动环。各种压力图(压力与时间,初始和最终压力与时间以及压力与时间的变化)表明,在0.01-0.05 wt%的提取物中,CE比MEG表现更好,系统中剩余气体体积百分比的值范围为76.7至87.33,而MEG的剩余体积范围为70至74.67% (1-5 wt%)。在研究的所有重量百分比中,与MEG相比,CE在小剂量下表现更好。此外,抑制能力表明抑制剂的性能水平也被用来作为抑制两种抑制剂的措施。CE抑制体系的权重分别为69.3、80.7、78.07、79.82和83.3%,MEG抑制体系的权重分别为60.53、55.26、73.68、72.81和66.67%。由于其高效、环保的特点,应作为天然气水合物抑制剂加以开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laboratory evaluation of caricaceae plant as a locally sourced surfactant for gas hydrate inhibition in a laboratory mini flow loop

The oil and gas business is serious business and involves millions of dollars so whatever mitigates flow assurance is taken seriously. One of such things is natural gas hydrates. Hydrates are crystalline solids formed when water under low temperatures and high pressures encapsulated natural gases (C1–C4). They form blockages and impede the flow of gas which can lead to the loss of millions of dollars and at times lead to personnel death. Mitigation of gas hydrates has always been with chemicals especially for areas like deep offshore where accessibility is difficult. The chemicals that are in use currently are generally synthetic, expensive and hazardous to lives and environment hence the need for readily available locally sourced materials that are eco-friendly. This study considers and screens a locally sourced surfactant from the plant family caricaceae’ Extract (CE) as a gas hydrate inhibitor in a locally fabricated 39.4-inch mini flow loop of ½ inch internal diameter (ID) which mimics the offshore environment. Various pressure plots (pressure versus time, initial and final pressure versus time and change in pressure versus time) show that the CE performed better than MEG with percentage volumes of gas left in the system for 0.01–0.05 wt% of the extract having values that ranged from 76.7 to 87.33, while volume left for MEG ranged between 70 and 74.67% (1–5 wt%). The CE performed better in small doses compared to those of MEG, in all weight percentages of study. Furthermore, the inhibition capacities which show the level of performance of the inhibitors was also used as a measure of inhibition for both inhibitors. The CE inhibited systems had values of 69.3, 80.7, 78.07, 79.82, and 83.3%, while that of the MEG inhibited system was 60.53, 55.26, 73.68, 72.81, and 66.67% for the various weight percentages considered. The CE should be developed as gas hydrate inhibitors due to its effectiveness and eco-friendliness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Petrochemical Research
Applied Petrochemical Research ENGINEERING, CHEMICAL-
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信