关于q-超几何函数的Riemann-Liouville分数积分的三明治型结果

IF 2 3区 数学 Q1 MATHEMATICS
A. Alb Lupaș, G. Oros
{"title":"关于q-超几何函数的Riemann-Liouville分数积分的三明治型结果","authors":"A. Alb Lupaș, G. Oros","doi":"10.1515/dema-2022-0186","DOIUrl":null,"url":null,"abstract":"Abstract The study presented in this article involves q-calculus connected to fractional calculus applied in the univalent functions theory. Riemann-Liouville fractional integral of q-hypergeometric function is defined here, and investigations are conducted using the theories of differential subordination and superordination. Theorems and corollaries containing new subordination and superordination results are proved for which best dominants and best subordinants are given, respectively. As an application of the results obtained by the means of the two theories, the statement of a sandwich-type theorem concludes the study.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function\",\"authors\":\"A. Alb Lupaș, G. Oros\",\"doi\":\"10.1515/dema-2022-0186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study presented in this article involves q-calculus connected to fractional calculus applied in the univalent functions theory. Riemann-Liouville fractional integral of q-hypergeometric function is defined here, and investigations are conducted using the theories of differential subordination and superordination. Theorems and corollaries containing new subordination and superordination results are proved for which best dominants and best subordinants are given, respectively. As an application of the results obtained by the means of the two theories, the statement of a sandwich-type theorem concludes the study.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0186\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0186","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文的研究涉及到应用于单价函数理论中的与分式微积分相关的q-微积分。定义了q-超几何函数的Riemann-Liouville分数积分,并利用微分隶属和超排序理论进行了研究。证明了包含新隶属和超隶属结果的定理和推论,分别给出了它们的最佳支配项和最佳隶属项。作为两种理论结果的应用,三明治型定理的陈述结束了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function
Abstract The study presented in this article involves q-calculus connected to fractional calculus applied in the univalent functions theory. Riemann-Liouville fractional integral of q-hypergeometric function is defined here, and investigations are conducted using the theories of differential subordination and superordination. Theorems and corollaries containing new subordination and superordination results are proved for which best dominants and best subordinants are given, respectively. As an application of the results obtained by the means of the two theories, the statement of a sandwich-type theorem concludes the study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信