{"title":"多星座GNSS在减少观测误差和提高定位精度中的作用","authors":"","doi":"10.52939/ijg.v19i4.2631","DOIUrl":null,"url":null,"abstract":"Using Precise point positioning (PPP) technique can help to reach decimeters accuracy for positioning by using one receiver only. Since it set to track Global Navigation Satellite System (GNSS). Recently BeiDou and Galileo systems have been devolved periodically and increasing the number of working satellites. Addition to those all-global Navigation systems is able to receive triple frequency signals. The effect of using Multi constellation of GNSS and combination of different systems with each other’s need to be investigated. In this paper, four Multi GNSS EXPERIMENT (MGEX) stations with 24 hours observation files and 30 second interval time during a 1 week of averaged data of January 2020 (2134 GPS week) are used to investigate the accuracy of using combined solution of GNSS with 12 cases of study. Data were processed by PPPH program. To investigate the effect of using the different GNSS combinations while using the PPP method, contrast experiments have been tested by mixing dual frequency ionospheric-free PPP models in static mode with G only, GLO only, G + GLO, G+ B, GLO+B, G+GAL, GLO+GAL, GLO+B+GAL, GNSS, G +GAL+B, G+GLO+B and G+GLO+GAL combination cases, where G refers to GPS, GLO refers to GLONASS, GAL refers to Galileo and B refers to BeiDou. The results show that the combined GPS and Galileo observation in PPP solution improves the convergence time and gives the shortest convergence time of the 12 study cases with average value 53 minute and with minimum value 35 minute. By comparing the root mean square error (RMS) values, the combination of G+GL+B had the minimum RMS error in North and East direction with minimum value 1.2 cm, maximum value 1.8 cm and average value1.45 cm. And the combination of GLO+GAL+B had the minimum RMS errors in up directions with average value 2.775 cm and minimum 2.775 cm and maximum 4.5 cm. In conclusion, the results indicate that the combination of different GNSS can give more accurate solution of the PPP. The combined PPP has shown an improvement in the convergence time in the case of using combined of G and GAL observation, while the positioning accuracy after convergence has no shown significant improvement. The result of G+GAL+B give the minimum RMS error in North and East direction and the combination of GLO+GAL+B give the minimum RMS errors in up directions.","PeriodicalId":38707,"journal":{"name":"International Journal of Geoinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role of Multi-Constellation GNSS in the Mitigation of the Observation Errors and the Enhancement of the Positioning Accuracy\",\"authors\":\"\",\"doi\":\"10.52939/ijg.v19i4.2631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Precise point positioning (PPP) technique can help to reach decimeters accuracy for positioning by using one receiver only. Since it set to track Global Navigation Satellite System (GNSS). Recently BeiDou and Galileo systems have been devolved periodically and increasing the number of working satellites. Addition to those all-global Navigation systems is able to receive triple frequency signals. The effect of using Multi constellation of GNSS and combination of different systems with each other’s need to be investigated. In this paper, four Multi GNSS EXPERIMENT (MGEX) stations with 24 hours observation files and 30 second interval time during a 1 week of averaged data of January 2020 (2134 GPS week) are used to investigate the accuracy of using combined solution of GNSS with 12 cases of study. Data were processed by PPPH program. To investigate the effect of using the different GNSS combinations while using the PPP method, contrast experiments have been tested by mixing dual frequency ionospheric-free PPP models in static mode with G only, GLO only, G + GLO, G+ B, GLO+B, G+GAL, GLO+GAL, GLO+B+GAL, GNSS, G +GAL+B, G+GLO+B and G+GLO+GAL combination cases, where G refers to GPS, GLO refers to GLONASS, GAL refers to Galileo and B refers to BeiDou. The results show that the combined GPS and Galileo observation in PPP solution improves the convergence time and gives the shortest convergence time of the 12 study cases with average value 53 minute and with minimum value 35 minute. By comparing the root mean square error (RMS) values, the combination of G+GL+B had the minimum RMS error in North and East direction with minimum value 1.2 cm, maximum value 1.8 cm and average value1.45 cm. And the combination of GLO+GAL+B had the minimum RMS errors in up directions with average value 2.775 cm and minimum 2.775 cm and maximum 4.5 cm. In conclusion, the results indicate that the combination of different GNSS can give more accurate solution of the PPP. The combined PPP has shown an improvement in the convergence time in the case of using combined of G and GAL observation, while the positioning accuracy after convergence has no shown significant improvement. The result of G+GAL+B give the minimum RMS error in North and East direction and the combination of GLO+GAL+B give the minimum RMS errors in up directions.\",\"PeriodicalId\":38707,\"journal\":{\"name\":\"International Journal of Geoinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52939/ijg.v19i4.2631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52939/ijg.v19i4.2631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
Role of Multi-Constellation GNSS in the Mitigation of the Observation Errors and the Enhancement of the Positioning Accuracy
Using Precise point positioning (PPP) technique can help to reach decimeters accuracy for positioning by using one receiver only. Since it set to track Global Navigation Satellite System (GNSS). Recently BeiDou and Galileo systems have been devolved periodically and increasing the number of working satellites. Addition to those all-global Navigation systems is able to receive triple frequency signals. The effect of using Multi constellation of GNSS and combination of different systems with each other’s need to be investigated. In this paper, four Multi GNSS EXPERIMENT (MGEX) stations with 24 hours observation files and 30 second interval time during a 1 week of averaged data of January 2020 (2134 GPS week) are used to investigate the accuracy of using combined solution of GNSS with 12 cases of study. Data were processed by PPPH program. To investigate the effect of using the different GNSS combinations while using the PPP method, contrast experiments have been tested by mixing dual frequency ionospheric-free PPP models in static mode with G only, GLO only, G + GLO, G+ B, GLO+B, G+GAL, GLO+GAL, GLO+B+GAL, GNSS, G +GAL+B, G+GLO+B and G+GLO+GAL combination cases, where G refers to GPS, GLO refers to GLONASS, GAL refers to Galileo and B refers to BeiDou. The results show that the combined GPS and Galileo observation in PPP solution improves the convergence time and gives the shortest convergence time of the 12 study cases with average value 53 minute and with minimum value 35 minute. By comparing the root mean square error (RMS) values, the combination of G+GL+B had the minimum RMS error in North and East direction with minimum value 1.2 cm, maximum value 1.8 cm and average value1.45 cm. And the combination of GLO+GAL+B had the minimum RMS errors in up directions with average value 2.775 cm and minimum 2.775 cm and maximum 4.5 cm. In conclusion, the results indicate that the combination of different GNSS can give more accurate solution of the PPP. The combined PPP has shown an improvement in the convergence time in the case of using combined of G and GAL observation, while the positioning accuracy after convergence has no shown significant improvement. The result of G+GAL+B give the minimum RMS error in North and East direction and the combination of GLO+GAL+B give the minimum RMS errors in up directions.