有界算子的加泰罗尼亚生成函数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pedro J. Miana, Natalia Romero
{"title":"有界算子的加泰罗尼亚生成函数","authors":"Pedro J. Miana,&nbsp;Natalia Romero","doi":"10.1007/s43034-023-00290-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the solution of the quadratic equation <span>\\(TY^2-Y+I=0\\)</span> where <i>T</i> is a linear and bounded operator on a Banach space <i>X</i>. We describe the spectrum set and the resolvent operator of <i>Y</i> in terms of the ones of <i>T</i>. In the case that 4<i>T</i> is a power-bounded operator, we show that a solution (named Catalan generating function) of the above equation is given by the Taylor series </p><div><div><span>$$\\begin{aligned} C(T):=\\sum _{n=0}^\\infty C_nT^n, \\end{aligned}$$</span></div></div><p>where the sequence <span>\\((C_n)_{n\\ge 0}\\)</span> is the well-known Catalan numbers sequence. We express <i>C</i>(<i>T</i>) by means of an integral representation which involves the resolvent operator <span>\\((\\lambda T)^{-1}\\)</span>. Some particular examples to illustrate our results are given, in particular an iterative method defined for square matrices <i>T</i> which involves Catalan numbers.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-023-00290-0.pdf","citationCount":"1","resultStr":"{\"title\":\"Catalan generating functions for bounded operators\",\"authors\":\"Pedro J. Miana,&nbsp;Natalia Romero\",\"doi\":\"10.1007/s43034-023-00290-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the solution of the quadratic equation <span>\\\\(TY^2-Y+I=0\\\\)</span> where <i>T</i> is a linear and bounded operator on a Banach space <i>X</i>. We describe the spectrum set and the resolvent operator of <i>Y</i> in terms of the ones of <i>T</i>. In the case that 4<i>T</i> is a power-bounded operator, we show that a solution (named Catalan generating function) of the above equation is given by the Taylor series </p><div><div><span>$$\\\\begin{aligned} C(T):=\\\\sum _{n=0}^\\\\infty C_nT^n, \\\\end{aligned}$$</span></div></div><p>where the sequence <span>\\\\((C_n)_{n\\\\ge 0}\\\\)</span> is the well-known Catalan numbers sequence. We express <i>C</i>(<i>T</i>) by means of an integral representation which involves the resolvent operator <span>\\\\((\\\\lambda T)^{-1}\\\\)</span>. Some particular examples to illustrate our results are given, in particular an iterative method defined for square matrices <i>T</i> which involves Catalan numbers.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-023-00290-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00290-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00290-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了Banach空间X上的二次方程(TY^2-Y+I=0)的解,其中T是一个线性有界算子,我们证明了上述方程的一个解(命名为Catalan生成函数)是由泰勒级数$$\ begin{aligned}C(T):=\sum_{n=0}^\ infty C_nT^n,\ end{align}$$给出的,其中序列\((C_n)_{n\ge 0}\)是众所周知的Catalan数序列。我们用包含预分解算子\((λT)^{-1}\)的积分表示来表示C(T)。给出了一些具体的例子来说明我们的结果,特别是为涉及加泰罗尼亚数的平方矩阵T定义的迭代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Catalan generating functions for bounded operators

Catalan generating functions for bounded operators

In this paper, we study the solution of the quadratic equation \(TY^2-Y+I=0\) where T is a linear and bounded operator on a Banach space X. We describe the spectrum set and the resolvent operator of Y in terms of the ones of T. In the case that 4T is a power-bounded operator, we show that a solution (named Catalan generating function) of the above equation is given by the Taylor series

$$\begin{aligned} C(T):=\sum _{n=0}^\infty C_nT^n, \end{aligned}$$

where the sequence \((C_n)_{n\ge 0}\) is the well-known Catalan numbers sequence. We express C(T) by means of an integral representation which involves the resolvent operator \((\lambda T)^{-1}\). Some particular examples to illustrate our results are given, in particular an iterative method defined for square matrices T which involves Catalan numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信