{"title":"半柔性聚合物在纳米狭缝内强约束下的弹射时间","authors":"Fatemeh Hafizi, S. Hoseinpoor, Narges Nikoofard","doi":"10.22036/PCR.2020.217674.1724","DOIUrl":null,"url":null,"abstract":"Advances in nano-fabrication techniques have enabled confinement of polymers at nano-scale cavities. This has raised a higher demand for development of theories for polymers in severe confinements. In this manuscript, the escape of a polymer confined in a nano-slit through a nano-pore in the strong confinement regime is investigated, theoretically and by using Langevin Dynamics (LD) simulations. The strong confinement occurs when the height of the nano-slit becomes smaller than the persistence length of the polymer. Persistence length is a measure of the polymer stiffness. The radius of gyrations R_g, the confinement force on the polymer f, and the ejection time of the polymer τ are obtained in different values of the polymer length L, the height of the nano-slit D, and the persistence length of the polymer P. The simulation results are well described with the scaling relations R_g/L^0.75 ~(P/D)^0.25 and f/L~(PD^5 )^(-0.4) and τ/L^2 ~(PD^2 )^0.42, respectively. The simulation results are in rather good agreement with the theory. It seems that the relative difference between theory and simulations is due to being close to the transition region between weak and strong confinement regimes.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"8 1","pages":"755-765"},"PeriodicalIF":1.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ejection Time of a Semi-Flexible Polymer from Strong Confinement inside a Nano-slit\",\"authors\":\"Fatemeh Hafizi, S. Hoseinpoor, Narges Nikoofard\",\"doi\":\"10.22036/PCR.2020.217674.1724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in nano-fabrication techniques have enabled confinement of polymers at nano-scale cavities. This has raised a higher demand for development of theories for polymers in severe confinements. In this manuscript, the escape of a polymer confined in a nano-slit through a nano-pore in the strong confinement regime is investigated, theoretically and by using Langevin Dynamics (LD) simulations. The strong confinement occurs when the height of the nano-slit becomes smaller than the persistence length of the polymer. Persistence length is a measure of the polymer stiffness. The radius of gyrations R_g, the confinement force on the polymer f, and the ejection time of the polymer τ are obtained in different values of the polymer length L, the height of the nano-slit D, and the persistence length of the polymer P. The simulation results are well described with the scaling relations R_g/L^0.75 ~(P/D)^0.25 and f/L~(PD^5 )^(-0.4) and τ/L^2 ~(PD^2 )^0.42, respectively. The simulation results are in rather good agreement with the theory. It seems that the relative difference between theory and simulations is due to being close to the transition region between weak and strong confinement regimes.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"8 1\",\"pages\":\"755-765\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.217674.1724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.217674.1724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ejection Time of a Semi-Flexible Polymer from Strong Confinement inside a Nano-slit
Advances in nano-fabrication techniques have enabled confinement of polymers at nano-scale cavities. This has raised a higher demand for development of theories for polymers in severe confinements. In this manuscript, the escape of a polymer confined in a nano-slit through a nano-pore in the strong confinement regime is investigated, theoretically and by using Langevin Dynamics (LD) simulations. The strong confinement occurs when the height of the nano-slit becomes smaller than the persistence length of the polymer. Persistence length is a measure of the polymer stiffness. The radius of gyrations R_g, the confinement force on the polymer f, and the ejection time of the polymer τ are obtained in different values of the polymer length L, the height of the nano-slit D, and the persistence length of the polymer P. The simulation results are well described with the scaling relations R_g/L^0.75 ~(P/D)^0.25 and f/L~(PD^5 )^(-0.4) and τ/L^2 ~(PD^2 )^0.42, respectively. The simulation results are in rather good agreement with the theory. It seems that the relative difference between theory and simulations is due to being close to the transition region between weak and strong confinement regimes.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.