半柔性聚合物在纳米狭缝内强约束下的弹射时间

IF 1.4 Q3 CHEMISTRY, MULTIDISCIPLINARY
Fatemeh Hafizi, S. Hoseinpoor, Narges Nikoofard
{"title":"半柔性聚合物在纳米狭缝内强约束下的弹射时间","authors":"Fatemeh Hafizi, S. Hoseinpoor, Narges Nikoofard","doi":"10.22036/PCR.2020.217674.1724","DOIUrl":null,"url":null,"abstract":"Advances in nano-fabrication techniques have enabled confinement of polymers at nano-scale cavities. This has raised a higher demand for development of theories for polymers in severe confinements. In this manuscript, the escape of a polymer confined in a nano-slit through a nano-pore in the strong confinement regime is investigated, theoretically and by using Langevin Dynamics (LD) simulations. The strong confinement occurs when the height of the nano-slit becomes smaller than the persistence length of the polymer. Persistence length is a measure of the polymer stiffness. The radius of gyrations R_g, the confinement force on the polymer f, and the ejection time of the polymer τ are obtained in different values of the polymer length L, the height of the nano-slit D, and the persistence length of the polymer P. The simulation results are well described with the scaling relations R_g/L^0.75 ~(P/D)^0.25 and f/L~(PD^5 )^(-0.4) and τ/L^2 ~(PD^2 )^0.42, respectively. The simulation results are in rather good agreement with the theory. It seems that the relative difference between theory and simulations is due to being close to the transition region between weak and strong confinement regimes.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"8 1","pages":"755-765"},"PeriodicalIF":1.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ejection Time of a Semi-Flexible Polymer from Strong Confinement inside a Nano-slit\",\"authors\":\"Fatemeh Hafizi, S. Hoseinpoor, Narges Nikoofard\",\"doi\":\"10.22036/PCR.2020.217674.1724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in nano-fabrication techniques have enabled confinement of polymers at nano-scale cavities. This has raised a higher demand for development of theories for polymers in severe confinements. In this manuscript, the escape of a polymer confined in a nano-slit through a nano-pore in the strong confinement regime is investigated, theoretically and by using Langevin Dynamics (LD) simulations. The strong confinement occurs when the height of the nano-slit becomes smaller than the persistence length of the polymer. Persistence length is a measure of the polymer stiffness. The radius of gyrations R_g, the confinement force on the polymer f, and the ejection time of the polymer τ are obtained in different values of the polymer length L, the height of the nano-slit D, and the persistence length of the polymer P. The simulation results are well described with the scaling relations R_g/L^0.75 ~(P/D)^0.25 and f/L~(PD^5 )^(-0.4) and τ/L^2 ~(PD^2 )^0.42, respectively. The simulation results are in rather good agreement with the theory. It seems that the relative difference between theory and simulations is due to being close to the transition region between weak and strong confinement regimes.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"8 1\",\"pages\":\"755-765\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.217674.1724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.217674.1724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米制造技术的进步使聚合物能够被限制在纳米级空腔中。这对聚合物在严格约束条件下的理论发展提出了更高的要求。在这篇手稿中,通过Langevin动力学(LD)模拟,从理论上研究了被限制在纳米狭缝中的聚合物在强限制状态下通过纳米孔的逃逸。当纳米狭缝的高度变得小于聚合物的持久长度时,就会发生强约束。持久性长度是聚合物硬度的度量。在聚合物长度L、纳米狭缝高度D和聚合物持久长度P的不同值下,得到了聚合物的回转半径R_g、对聚合物的约束力f和聚合物的喷射时间τ。模拟结果分别用比例关系R_g/L^0.75~(P/D)^0.25和f/L~(PD^5)^(-0.4)和τ/L^2~(PD^2)^0.42进行了很好的描述。仿真结果与理论吻合较好。理论和模拟之间的相对差异似乎是由于接近弱约束和强约束状态之间的过渡区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ejection Time of a Semi-Flexible Polymer from Strong Confinement inside a Nano-slit
Advances in nano-fabrication techniques have enabled confinement of polymers at nano-scale cavities. This has raised a higher demand for development of theories for polymers in severe confinements. In this manuscript, the escape of a polymer confined in a nano-slit through a nano-pore in the strong confinement regime is investigated, theoretically and by using Langevin Dynamics (LD) simulations. The strong confinement occurs when the height of the nano-slit becomes smaller than the persistence length of the polymer. Persistence length is a measure of the polymer stiffness. The radius of gyrations R_g, the confinement force on the polymer f, and the ejection time of the polymer τ are obtained in different values of the polymer length L, the height of the nano-slit D, and the persistence length of the polymer P. The simulation results are well described with the scaling relations R_g/L^0.75 ~(P/D)^0.25 and f/L~(PD^5 )^(-0.4) and τ/L^2 ~(PD^2 )^0.42, respectively. The simulation results are in rather good agreement with the theory. It seems that the relative difference between theory and simulations is due to being close to the transition region between weak and strong confinement regimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Research
Physical Chemistry Research CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
8.30%
发文量
18
期刊介绍: The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信