{"title":"全参数环境下均值回归函数形式的检验","authors":"Stanislav Anatolyev","doi":"10.1515/JEM-2016-0013","DOIUrl":null,"url":null,"abstract":"Abstract We develop a test for a restricted functional form of a mean regression when a complex distributional model for all variables is estimated. The test statistic is an average squared deviation from the estimated hypothesized function of the form implied by the estimated parametric model, and is asymptotically distributed as a mixture of χ2 distributions. The test is easy to implement using numerical derivatives, and it performs well in samples of typical size. We illustrate the test using data on labor market characteristics of US young men.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/JEM-2016-0013","citationCount":"0","resultStr":"{\"title\":\"Testing for a Functional Form of Mean Regression in a Fully Parametric Environment\",\"authors\":\"Stanislav Anatolyev\",\"doi\":\"10.1515/JEM-2016-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a test for a restricted functional form of a mean regression when a complex distributional model for all variables is estimated. The test statistic is an average squared deviation from the estimated hypothesized function of the form implied by the estimated parametric model, and is asymptotically distributed as a mixture of χ2 distributions. The test is easy to implement using numerical derivatives, and it performs well in samples of typical size. We illustrate the test using data on labor market characteristics of US young men.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/JEM-2016-0013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/JEM-2016-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JEM-2016-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Testing for a Functional Form of Mean Regression in a Fully Parametric Environment
Abstract We develop a test for a restricted functional form of a mean regression when a complex distributional model for all variables is estimated. The test statistic is an average squared deviation from the estimated hypothesized function of the form implied by the estimated parametric model, and is asymptotically distributed as a mixture of χ2 distributions. The test is easy to implement using numerical derivatives, and it performs well in samples of typical size. We illustrate the test using data on labor market characteristics of US young men.