实验室对急性心肌梗死的预测的重要性

И. Е. Белая, В. И. Коломиец, Э. К. Мусаева
{"title":"实验室对急性心肌梗死的预测的重要性","authors":"И. Е. Белая, В. И. Коломиец, Э. К. Мусаева","doi":"10.17650/1818-8338-2016-10-4-29-35","DOIUrl":null,"url":null,"abstract":"The study objective is to validate a mathematical model for prognosis of progression of the acute period of myocardial infarction. Materials and methods . We examined 135 patients with acute Q-wave myocardial infarction of the left ventricle aged between 34 and 88 years (mean age 66, standard deviation 12 years), among them 64 women and 71 men. For prognosis of the outcome of the acute period of myocardial infarction we used an approach based on intellectual data analysis (data mining) in combination with mathematical methods based on decision trees. Results. Using decision tree algorithms, we singled out laboratory parameters (attributes) which were subsequently used as input. Adequacy of classification of these attributes was determined by a contingency table. Accuracy of the obtained calculation results was 95.56 % demonstrating good agreement between the model and observed data. In a decision tree visualization, the most significant 8 laboratory parameters were determined. Significance of NO 2 metabolite was 24.9 %, triglycerides – 16.7 %, urea – 14.8 %, erythrocytes – 11.2 %, alanine aminotransferase – 9.4 %, very low density lipoproteins – 9.4 %, creatinine – 8.5 %, prothrombin index – 5.1 %. In the Rules tab, only rules 4 and 9 can be used with confidence, because their confidence level approaches 100 %, and effect cost for the fact of death was 33.59 % and 32.03 %, respectively. Conclusion. Using a decision tree algorithm, we determined prognostically significant factors for progression of acute myocardial infarction. The following set of parameters predicts unfavorable outcome (death) with 95.56 % accuracy: NO 2 < level 22.755 mmol/l, triglycerides ≥ 1.565 mmol/l, erythrocytes < 4.91 M/uL, alanine aminotransferase < 1.23 mmol/l, urea < 7.05 mmol/l, very low-density lipoproteins < 0.965 mmol/l, creatinine ≥ 91.55 µmol/l, NO 2 level ≥ 22.755 mmol/l predicts a favorable outcome with 95.56 % accuracy.","PeriodicalId":30685,"journal":{"name":"Klinicist","volume":"11 1","pages":"29-35"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Значимость лабораторных показателей в прогнозировании исходов острого инфаркта миокарда\",\"authors\":\"И. Е. Белая, В. И. Коломиец, Э. К. Мусаева\",\"doi\":\"10.17650/1818-8338-2016-10-4-29-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study objective is to validate a mathematical model for prognosis of progression of the acute period of myocardial infarction. Materials and methods . We examined 135 patients with acute Q-wave myocardial infarction of the left ventricle aged between 34 and 88 years (mean age 66, standard deviation 12 years), among them 64 women and 71 men. For prognosis of the outcome of the acute period of myocardial infarction we used an approach based on intellectual data analysis (data mining) in combination with mathematical methods based on decision trees. Results. Using decision tree algorithms, we singled out laboratory parameters (attributes) which were subsequently used as input. Adequacy of classification of these attributes was determined by a contingency table. Accuracy of the obtained calculation results was 95.56 % demonstrating good agreement between the model and observed data. In a decision tree visualization, the most significant 8 laboratory parameters were determined. Significance of NO 2 metabolite was 24.9 %, triglycerides – 16.7 %, urea – 14.8 %, erythrocytes – 11.2 %, alanine aminotransferase – 9.4 %, very low density lipoproteins – 9.4 %, creatinine – 8.5 %, prothrombin index – 5.1 %. In the Rules tab, only rules 4 and 9 can be used with confidence, because their confidence level approaches 100 %, and effect cost for the fact of death was 33.59 % and 32.03 %, respectively. Conclusion. Using a decision tree algorithm, we determined prognostically significant factors for progression of acute myocardial infarction. The following set of parameters predicts unfavorable outcome (death) with 95.56 % accuracy: NO 2 < level 22.755 mmol/l, triglycerides ≥ 1.565 mmol/l, erythrocytes < 4.91 M/uL, alanine aminotransferase < 1.23 mmol/l, urea < 7.05 mmol/l, very low-density lipoproteins < 0.965 mmol/l, creatinine ≥ 91.55 µmol/l, NO 2 level ≥ 22.755 mmol/l predicts a favorable outcome with 95.56 % accuracy.\",\"PeriodicalId\":30685,\"journal\":{\"name\":\"Klinicist\",\"volume\":\"11 1\",\"pages\":\"29-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Klinicist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17650/1818-8338-2016-10-4-29-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Klinicist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17650/1818-8338-2016-10-4-29-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究目的是验证心肌梗死急性期进展预后的数学模型。材料和方法。我们研究了135例34 ~ 88岁(平均66岁,标准差12岁)的急性左心室q波心肌梗死患者,其中女性64例,男性71例。对于心肌梗死急性期预后的预测,我们采用了基于智能数据分析(数据挖掘)和基于决策树的数学方法相结合的方法。结果。使用决策树算法,我们挑选出随后用作输入的实验室参数(属性)。通过列联表确定这些属性分类的充分性。计算结果的精度为95.56%,表明模型与实测数据吻合较好。在决策树可视化中,确定了最重要的8个实验室参数。NO 2代谢物显著性为24.9%,甘油三酯显著性为16.7%,尿素显著性为14.8%,红细胞显著性为11.2%,丙氨酸转氨酶显著性为9.4%,极低密度脂蛋白显著性为9.4%,肌酐显著性为8.5%,凝血酶原显著性为5.1%。在规则选项卡中,只有规则4和规则9可以可信地使用,因为它们的置信水平接近100%,死亡事实的效果成本分别为33.59%和32.03%。结论。使用决策树算法,我们确定了急性心肌梗死进展的预后重要因素。以下参数预测不良结局(死亡)的准确率为95.56%:NO 2 < 22.755 mmol/l,甘油三酯≥1.565 mmol/l,红细胞< 4.91 M/uL,丙氨酸转氨酶< 1.23 mmol/l,尿素< 7.05 mmol/l,极低密度脂蛋白< 0.965 mmol/l,肌酐≥91.55µmol/l, NO 2水平≥22.755 mmol/l预测良好结局的准确率为95.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Значимость лабораторных показателей в прогнозировании исходов острого инфаркта миокарда
The study objective is to validate a mathematical model for prognosis of progression of the acute period of myocardial infarction. Materials and methods . We examined 135 patients with acute Q-wave myocardial infarction of the left ventricle aged between 34 and 88 years (mean age 66, standard deviation 12 years), among them 64 women and 71 men. For prognosis of the outcome of the acute period of myocardial infarction we used an approach based on intellectual data analysis (data mining) in combination with mathematical methods based on decision trees. Results. Using decision tree algorithms, we singled out laboratory parameters (attributes) which were subsequently used as input. Adequacy of classification of these attributes was determined by a contingency table. Accuracy of the obtained calculation results was 95.56 % demonstrating good agreement between the model and observed data. In a decision tree visualization, the most significant 8 laboratory parameters were determined. Significance of NO 2 metabolite was 24.9 %, triglycerides – 16.7 %, urea – 14.8 %, erythrocytes – 11.2 %, alanine aminotransferase – 9.4 %, very low density lipoproteins – 9.4 %, creatinine – 8.5 %, prothrombin index – 5.1 %. In the Rules tab, only rules 4 and 9 can be used with confidence, because their confidence level approaches 100 %, and effect cost for the fact of death was 33.59 % and 32.03 %, respectively. Conclusion. Using a decision tree algorithm, we determined prognostically significant factors for progression of acute myocardial infarction. The following set of parameters predicts unfavorable outcome (death) with 95.56 % accuracy: NO 2 < level 22.755 mmol/l, triglycerides ≥ 1.565 mmol/l, erythrocytes < 4.91 M/uL, alanine aminotransferase < 1.23 mmol/l, urea < 7.05 mmol/l, very low-density lipoproteins < 0.965 mmol/l, creatinine ≥ 91.55 µmol/l, NO 2 level ≥ 22.755 mmol/l predicts a favorable outcome with 95.56 % accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信