{"title":"片上量子光学与集成光力学","authors":"D. Hoch, T. Sommer, S. Müller, M. Poot","doi":"10.3906/fiz-2004-20","DOIUrl":null,"url":null,"abstract":"Recent developments in quantum computing and the growing interest in optomechanics and quantum optics need platforms that enable rapid prototyping and scalability. This can be fulfilled by on-chip integration, as we present here. The different nanofabrication steps are explained, and our automated measurement setup is discussed. We present an opto-electromechanical device, the H-resonator, which enables optomechanical experiments such as electrostatic springs and nonlinearities and thermomechanical squeezing. Moreover, it also functions as an optomechanical phase shifter, an essential element for our integrated quantum optics efforts. Besides this, the equivalent of a beam splitter in photonics-the directional coupler-is shown. Its coupling ratio can be reliably controlled, as we show with experimental data. Several directional couplers combined can realize the CNOT operation with almost ideal fidelity.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":"44 1","pages":"239-246"},"PeriodicalIF":1.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3906/fiz-2004-20","citationCount":"3","resultStr":"{\"title\":\"On-chip quantum opticsand integrated optomechanics\",\"authors\":\"D. Hoch, T. Sommer, S. Müller, M. Poot\",\"doi\":\"10.3906/fiz-2004-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in quantum computing and the growing interest in optomechanics and quantum optics need platforms that enable rapid prototyping and scalability. This can be fulfilled by on-chip integration, as we present here. The different nanofabrication steps are explained, and our automated measurement setup is discussed. We present an opto-electromechanical device, the H-resonator, which enables optomechanical experiments such as electrostatic springs and nonlinearities and thermomechanical squeezing. Moreover, it also functions as an optomechanical phase shifter, an essential element for our integrated quantum optics efforts. Besides this, the equivalent of a beam splitter in photonics-the directional coupler-is shown. Its coupling ratio can be reliably controlled, as we show with experimental data. Several directional couplers combined can realize the CNOT operation with almost ideal fidelity.\",\"PeriodicalId\":46003,\"journal\":{\"name\":\"Turkish Journal of Physics\",\"volume\":\"44 1\",\"pages\":\"239-246\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3906/fiz-2004-20\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3906/fiz-2004-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/fiz-2004-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent developments in quantum computing and the growing interest in optomechanics and quantum optics need platforms that enable rapid prototyping and scalability. This can be fulfilled by on-chip integration, as we present here. The different nanofabrication steps are explained, and our automated measurement setup is discussed. We present an opto-electromechanical device, the H-resonator, which enables optomechanical experiments such as electrostatic springs and nonlinearities and thermomechanical squeezing. Moreover, it also functions as an optomechanical phase shifter, an essential element for our integrated quantum optics efforts. Besides this, the equivalent of a beam splitter in photonics-the directional coupler-is shown. Its coupling ratio can be reliably controlled, as we show with experimental data. Several directional couplers combined can realize the CNOT operation with almost ideal fidelity.
期刊介绍:
The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.