{"title":"具有平凡正则丛的复曲面上的简单法线的微分几何全局光滑","authors":"Mamoru Doi, N. Yotsutani","doi":"10.1515/coma-2022-0143","DOIUrl":null,"url":null,"abstract":"Abstract Let X X be a simple normal crossing (SNC) compact complex surface with trivial canonical bundle which includes triple intersections. We prove that if X X is d d -semistable, then there exists a family of smoothings in a differential geometric sense. This can be interpreted as a differential geometric analogue of the smoothability results due to Friedman, Kawamata-Namikawa, Felten-Filip-Ruddat, Chan-Leung-Ma, and others in algebraic geometry. The proof is based on an explicit construction of local smoothings around the singular locus of X X , and the first author’s existence result of holomorphic volume forms on global smoothings of X X . In particular, these volume forms are given as solutions of a nonlinear elliptic partial differential equation. As an application, we provide several examples of d d -semistable SNC complex surfaces with trivial canonical bundle including double curves, which are smoothable to complex tori, primary Kodaira surfaces, and K 3 K3 surfaces. We also provide several examples of such complex surfaces including triple points, which are smoothable to K 3 K3 surfaces.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Differential geometric global smoothings of simple normal crossing complex surfaces with trivial canonical bundle\",\"authors\":\"Mamoru Doi, N. Yotsutani\",\"doi\":\"10.1515/coma-2022-0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X X be a simple normal crossing (SNC) compact complex surface with trivial canonical bundle which includes triple intersections. We prove that if X X is d d -semistable, then there exists a family of smoothings in a differential geometric sense. This can be interpreted as a differential geometric analogue of the smoothability results due to Friedman, Kawamata-Namikawa, Felten-Filip-Ruddat, Chan-Leung-Ma, and others in algebraic geometry. The proof is based on an explicit construction of local smoothings around the singular locus of X X , and the first author’s existence result of holomorphic volume forms on global smoothings of X X . In particular, these volume forms are given as solutions of a nonlinear elliptic partial differential equation. As an application, we provide several examples of d d -semistable SNC complex surfaces with trivial canonical bundle including double curves, which are smoothable to complex tori, primary Kodaira surfaces, and K 3 K3 surfaces. We also provide several examples of such complex surfaces including triple points, which are smoothable to K 3 K3 surfaces.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2022-0143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2022-0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
摘要设X X是一个具有平凡正则丛的简单正交(SNC)紧致复曲面,它包含三个交。我们证明了如果X是d-半稳定的,那么在微分几何意义上存在一个光滑族。这可以被解释为代数几何中Friedman、Kawamata Namikawa、Felten Filip Ruddat、Chan Leung Ma等人的光滑性结果的微分几何模拟。该证明基于X X奇异轨迹上局部光滑的显式构造,以及第一作者关于X X全局光滑上全纯体形式的存在性结果。特别地,这些体积形式被给出为非线性椭圆偏微分方程的解。作为一个应用,我们提供了几个具有平凡正则丛的d-半稳定SNC复曲面的例子,这些平凡正则丛包括双曲,它们可以光滑到复环面、主Kodaira曲面和K3曲面。我们还提供了包括三点的这种复杂曲面的几个例子,这些三点可以平滑到K3曲面。
Differential geometric global smoothings of simple normal crossing complex surfaces with trivial canonical bundle
Abstract Let X X be a simple normal crossing (SNC) compact complex surface with trivial canonical bundle which includes triple intersections. We prove that if X X is d d -semistable, then there exists a family of smoothings in a differential geometric sense. This can be interpreted as a differential geometric analogue of the smoothability results due to Friedman, Kawamata-Namikawa, Felten-Filip-Ruddat, Chan-Leung-Ma, and others in algebraic geometry. The proof is based on an explicit construction of local smoothings around the singular locus of X X , and the first author’s existence result of holomorphic volume forms on global smoothings of X X . In particular, these volume forms are given as solutions of a nonlinear elliptic partial differential equation. As an application, we provide several examples of d d -semistable SNC complex surfaces with trivial canonical bundle including double curves, which are smoothable to complex tori, primary Kodaira surfaces, and K 3 K3 surfaces. We also provide several examples of such complex surfaces including triple points, which are smoothable to K 3 K3 surfaces.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.