Hölder-type空间,奇异算子,和不动点定理

Pub Date : 2021-02-20 DOI:10.24193/FPT-RO.2021.1.03
J. Appell, A. Dutkiewicz, B. López
{"title":"Hölder-type空间,奇异算子,和不动点定理","authors":"J. Appell, A. Dutkiewicz, B. López","doi":"10.24193/FPT-RO.2021.1.03","DOIUrl":null,"url":null,"abstract":"In this note, we give a sufficient condition for the existence of Hölder-type solutions to a class of fractional initial value problems involving Caputo derivatives. Since imposing (classical or general) global Lipschitz conditions on the nonlinear operators involved leads to degeneracy phenomena, the main emphasis is put on local Lipschitz conditions or fixed point principles of Schauder and Darbo type. To this end, we study continuity and boundedness conditions for linear RiemannLiouville operators and nonlinear Nemytskij operators in Hölder spaces of integral type which have much better properties than classical Hölder spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hölder-type spaces, singular operators, and fixed point theorems\",\"authors\":\"J. Appell, A. Dutkiewicz, B. López\",\"doi\":\"10.24193/FPT-RO.2021.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we give a sufficient condition for the existence of Hölder-type solutions to a class of fractional initial value problems involving Caputo derivatives. Since imposing (classical or general) global Lipschitz conditions on the nonlinear operators involved leads to degeneracy phenomena, the main emphasis is put on local Lipschitz conditions or fixed point principles of Schauder and Darbo type. To this end, we study continuity and boundedness conditions for linear RiemannLiouville operators and nonlinear Nemytskij operators in Hölder spaces of integral type which have much better properties than classical Hölder spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24193/FPT-RO.2021.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/FPT-RO.2021.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一类含Caputo导数的分数阶初值问题Hölder-type解存在的一个充分条件。由于对所涉及的非线性算子施加(经典或一般)全局Lipschitz条件会导致退化现象,因此主要强调局部Lipschitz条件或Schauder和Darbo型不动点原理。为此,我们研究了积分型Hölder空间中线性riemanannliouville算子和非线性Nemytskij算子的连续性和有界性条件,这些空间具有比经典Hölder空间更好的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hölder-type spaces, singular operators, and fixed point theorems
In this note, we give a sufficient condition for the existence of Hölder-type solutions to a class of fractional initial value problems involving Caputo derivatives. Since imposing (classical or general) global Lipschitz conditions on the nonlinear operators involved leads to degeneracy phenomena, the main emphasis is put on local Lipschitz conditions or fixed point principles of Schauder and Darbo type. To this end, we study continuity and boundedness conditions for linear RiemannLiouville operators and nonlinear Nemytskij operators in Hölder spaces of integral type which have much better properties than classical Hölder spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信