{"title":"用Hammerstein—Wiener估计法分析非能动热力系统的火用","authors":"A. Dhaundiyal","doi":"10.1115/1.4062686","DOIUrl":null,"url":null,"abstract":"\n A non-linear system identification approach was used to exploit the nonlinearly in the exergy of the system and reduce it into two or more interconnected elements. The Hammerstein-Wiener (H-W) methodology was adopted to describe the dynamics of a passive thermal system using a combination of nonlinear and linear blocks. Here, the linear block is a discrete transfer function which symbolizes the dynamic component of the model. The combination of Single Input Single Output (SISO) and Multiple Input Single Output (MISO) was adopted to develop the exergy model. The proposed model was validated using the state properties measured for the passive solar thermal system collector. The mean absolute percentage error (MAPE) for enthalpy changes falls in the domain of −0.01% to 0.01%, whereas it varied from −0.06% to 0.02% as the entropy of the system changed with time. Similarly, the MAPE encountered while evaluating the exergy of the system, was in the closed interval of −0.066% to −0.0017%. The average exergy gain by the H-W model across the Ist and IInd passages was, respectively, 0.90 kJ·kg−1 (8.10 g·s−1), 0.61 kJ·kg−1 (10.10 g·s−1) and 0.46 kJ·kg−1 (12.10 g·s−1), and 0.57 kJ·kg−1 (8.10 g·s−1), 0.48 kJ·kg−1 (10.10 g·s−1), and 0.79 kJ·kg−1 (12.10 g·s−1). The proposed model exhibited good fitting with the validation data.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exergy Analysis of a Passive Thermal System Using Hammerstein-Wiener Estimation\",\"authors\":\"A. Dhaundiyal\",\"doi\":\"10.1115/1.4062686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A non-linear system identification approach was used to exploit the nonlinearly in the exergy of the system and reduce it into two or more interconnected elements. The Hammerstein-Wiener (H-W) methodology was adopted to describe the dynamics of a passive thermal system using a combination of nonlinear and linear blocks. Here, the linear block is a discrete transfer function which symbolizes the dynamic component of the model. The combination of Single Input Single Output (SISO) and Multiple Input Single Output (MISO) was adopted to develop the exergy model. The proposed model was validated using the state properties measured for the passive solar thermal system collector. The mean absolute percentage error (MAPE) for enthalpy changes falls in the domain of −0.01% to 0.01%, whereas it varied from −0.06% to 0.02% as the entropy of the system changed with time. Similarly, the MAPE encountered while evaluating the exergy of the system, was in the closed interval of −0.066% to −0.0017%. The average exergy gain by the H-W model across the Ist and IInd passages was, respectively, 0.90 kJ·kg−1 (8.10 g·s−1), 0.61 kJ·kg−1 (10.10 g·s−1) and 0.46 kJ·kg−1 (12.10 g·s−1), and 0.57 kJ·kg−1 (8.10 g·s−1), 0.48 kJ·kg−1 (10.10 g·s−1), and 0.79 kJ·kg−1 (12.10 g·s−1). The proposed model exhibited good fitting with the validation data.\",\"PeriodicalId\":15676,\"journal\":{\"name\":\"Journal of Energy Resources Technology-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Resources Technology-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062686\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062686","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Exergy Analysis of a Passive Thermal System Using Hammerstein-Wiener Estimation
A non-linear system identification approach was used to exploit the nonlinearly in the exergy of the system and reduce it into two or more interconnected elements. The Hammerstein-Wiener (H-W) methodology was adopted to describe the dynamics of a passive thermal system using a combination of nonlinear and linear blocks. Here, the linear block is a discrete transfer function which symbolizes the dynamic component of the model. The combination of Single Input Single Output (SISO) and Multiple Input Single Output (MISO) was adopted to develop the exergy model. The proposed model was validated using the state properties measured for the passive solar thermal system collector. The mean absolute percentage error (MAPE) for enthalpy changes falls in the domain of −0.01% to 0.01%, whereas it varied from −0.06% to 0.02% as the entropy of the system changed with time. Similarly, the MAPE encountered while evaluating the exergy of the system, was in the closed interval of −0.066% to −0.0017%. The average exergy gain by the H-W model across the Ist and IInd passages was, respectively, 0.90 kJ·kg−1 (8.10 g·s−1), 0.61 kJ·kg−1 (10.10 g·s−1) and 0.46 kJ·kg−1 (12.10 g·s−1), and 0.57 kJ·kg−1 (8.10 g·s−1), 0.48 kJ·kg−1 (10.10 g·s−1), and 0.79 kJ·kg−1 (12.10 g·s−1). The proposed model exhibited good fitting with the validation data.
期刊介绍:
Specific areas of importance including, but not limited to: Fundamentals of thermodynamics such as energy, entropy and exergy, laws of thermodynamics; Thermoeconomics; Alternative and renewable energy sources; Internal combustion engines; (Geo) thermal energy storage and conversion systems; Fundamental combustion of fuels; Energy resource recovery from biomass and solid wastes; Carbon capture; Land and offshore wells drilling; Production and reservoir engineering;, Economics of energy resource exploitation