{"title":"火山喷出物作为高性能辅助胶凝材料的重力分级和粉碎利用","authors":"A. Tomoyose, T. Noguchi, K. Sodeyama, K. Higashi","doi":"10.21809/RILEMTECHLETT.2018.66","DOIUrl":null,"url":null,"abstract":"The reaction of natural pozzolans is caused by volcanic glass composed of amorphous silicate; however, volcanic ejecta also contains crystal mineral, pumice, and sometimes weathered clay fraction in their natural conditions. By focusing on the differences of physical properties between these components, high-purity volcanic glass powder (VGP) was manufactured by dry gravity classification and pulverization. This paper reports the results of investigations to utilize pyroclastic flow deposits as a supplementary cementitious material (SCM). \nThrough this method, the glass content of VGP increased to 88% with a mean particle size of 1 μm, when that of the raw material is about 60%. Chemical analysis indicated that VGP is principally composed of silica (about 72%) and alumina (about 13%). \nThe performance of VGP as a SCM was evaluated by conducting tests on concrete mixtures, replacing 0% to 30% by weight of portland cement by VGP with a 20% to 60% water to cement ratio. VGP concrete showed better results of 7-and 28-day compressive strength compared to control concrete in all experiments. In particular, VGP demonstrated better flowability and strength development in concrete with a low water-binder ratio in comparison to silica fume.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Utilization of volcanic ejecta as a high-performance supplementary cementitious material by gravity classification and pulverization\",\"authors\":\"A. Tomoyose, T. Noguchi, K. Sodeyama, K. Higashi\",\"doi\":\"10.21809/RILEMTECHLETT.2018.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reaction of natural pozzolans is caused by volcanic glass composed of amorphous silicate; however, volcanic ejecta also contains crystal mineral, pumice, and sometimes weathered clay fraction in their natural conditions. By focusing on the differences of physical properties between these components, high-purity volcanic glass powder (VGP) was manufactured by dry gravity classification and pulverization. This paper reports the results of investigations to utilize pyroclastic flow deposits as a supplementary cementitious material (SCM). \\nThrough this method, the glass content of VGP increased to 88% with a mean particle size of 1 μm, when that of the raw material is about 60%. Chemical analysis indicated that VGP is principally composed of silica (about 72%) and alumina (about 13%). \\nThe performance of VGP as a SCM was evaluated by conducting tests on concrete mixtures, replacing 0% to 30% by weight of portland cement by VGP with a 20% to 60% water to cement ratio. VGP concrete showed better results of 7-and 28-day compressive strength compared to control concrete in all experiments. In particular, VGP demonstrated better flowability and strength development in concrete with a low water-binder ratio in comparison to silica fume.\",\"PeriodicalId\":36420,\"journal\":{\"name\":\"RILEM Technical Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RILEM Technical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21809/RILEMTECHLETT.2018.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/RILEMTECHLETT.2018.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Utilization of volcanic ejecta as a high-performance supplementary cementitious material by gravity classification and pulverization
The reaction of natural pozzolans is caused by volcanic glass composed of amorphous silicate; however, volcanic ejecta also contains crystal mineral, pumice, and sometimes weathered clay fraction in their natural conditions. By focusing on the differences of physical properties between these components, high-purity volcanic glass powder (VGP) was manufactured by dry gravity classification and pulverization. This paper reports the results of investigations to utilize pyroclastic flow deposits as a supplementary cementitious material (SCM).
Through this method, the glass content of VGP increased to 88% with a mean particle size of 1 μm, when that of the raw material is about 60%. Chemical analysis indicated that VGP is principally composed of silica (about 72%) and alumina (about 13%).
The performance of VGP as a SCM was evaluated by conducting tests on concrete mixtures, replacing 0% to 30% by weight of portland cement by VGP with a 20% to 60% water to cement ratio. VGP concrete showed better results of 7-and 28-day compressive strength compared to control concrete in all experiments. In particular, VGP demonstrated better flowability and strength development in concrete with a low water-binder ratio in comparison to silica fume.