关于L.C.Q.K.流形的一个注记

IF 0.4 Q4 MATHEMATICS
M. Choudhary
{"title":"关于L.C.Q.K.流形的一个注记","authors":"M. Choudhary","doi":"10.1080/1726037X.2020.1859801","DOIUrl":null,"url":null,"abstract":"Abstract L.c.q.K. manifolds were investigated by ([4], [7], [6], [8]) and antiinvariant Riemannian submersion was studied in ([10],[1]). The present note aims to work on anti-invariant and Lagrangian Riemannian submersion of locally conformal quaternion Kaehler manifolds. Further, the geometry of foliation is discussed and some decomposition results for such submersions are obtained.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"145 - 161"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1859801","citationCount":"1","resultStr":"{\"title\":\"A Note on L.C.Q.K. Manifolds\",\"authors\":\"M. Choudhary\",\"doi\":\"10.1080/1726037X.2020.1859801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract L.c.q.K. manifolds were investigated by ([4], [7], [6], [8]) and antiinvariant Riemannian submersion was studied in ([10],[1]). The present note aims to work on anti-invariant and Lagrangian Riemannian submersion of locally conformal quaternion Kaehler manifolds. Further, the geometry of foliation is discussed and some decomposition results for such submersions are obtained.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"145 - 161\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1859801\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1859801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1859801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要L.c.q.K.流形由([4],[7],[6],[8])研究,反不变黎曼浸没由([10],[1])研究。本文旨在研究局部共形四元数Kaehler流形的反不变量和拉格朗日黎曼淹没。此外,还讨论了叶理的几何形状,并获得了这种浸没的一些分解结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on L.C.Q.K. Manifolds
Abstract L.c.q.K. manifolds were investigated by ([4], [7], [6], [8]) and antiinvariant Riemannian submersion was studied in ([10],[1]). The present note aims to work on anti-invariant and Lagrangian Riemannian submersion of locally conformal quaternion Kaehler manifolds. Further, the geometry of foliation is discussed and some decomposition results for such submersions are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信