大地测量网络异常点识别研究的蒙特卡罗模拟——以迭代数据窥探平差网络为例

Q4 Social Sciences
M. T. Matsuoka, V. F. Rofatto, I. Klein, Alexandre Gomes, M. Guzatto
{"title":"大地测量网络异常点识别研究的蒙特卡罗模拟——以迭代数据窥探平差网络为例","authors":"M. T. Matsuoka, V. F. Rofatto, I. Klein, Alexandre Gomes, M. Guzatto","doi":"10.14710/geoplanning.6.1.21-30","DOIUrl":null,"url":null,"abstract":"Today with the fast and powerful computers, large data storage systems and modern softwares, the probabilities distribution and efficiency of statistical testing algorithms can be estimated using computerized simulation. Here, we use Monte Carlo simulation (MCS) to investigate the power of the test and error probabilities of the Baarda’s iterative data snooping procedure as test statistic for outlier identification in the Gauss-Markov model. The MCS discards the use of the observation vector of Gauss-Markov model. In fact, to perform the analysis, the only needs are the Jacobian matrix; the uncertainty of the observations; and the magnitude intervals of the outliers. The random errors (or residuals) are generated artificially from the normal statistical distribution, while the size of outliers is randomly selected using standard uniform distribution. Results for simulated closed leveling network reveal that data snooping can locate an outlier in the order of magnitude 5σ with high success rate. The lower the magnitude of the outliers, the lower is the efficiency of data snooping in the simulated network. In general, considering the network simulated, the data snooping procedure was more efficient for α=0.01 (1%) with 82.8% success rate.","PeriodicalId":30789,"journal":{"name":"Geoplanning Journal of Geomatics and Planning","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14710/geoplanning.6.1.21-30","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo Simulation for Outlier Identification Studies in Geodetic Network: An Example in A Levelling Network Using Iterative Data Snooping\",\"authors\":\"M. T. Matsuoka, V. F. Rofatto, I. Klein, Alexandre Gomes, M. Guzatto\",\"doi\":\"10.14710/geoplanning.6.1.21-30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today with the fast and powerful computers, large data storage systems and modern softwares, the probabilities distribution and efficiency of statistical testing algorithms can be estimated using computerized simulation. Here, we use Monte Carlo simulation (MCS) to investigate the power of the test and error probabilities of the Baarda’s iterative data snooping procedure as test statistic for outlier identification in the Gauss-Markov model. The MCS discards the use of the observation vector of Gauss-Markov model. In fact, to perform the analysis, the only needs are the Jacobian matrix; the uncertainty of the observations; and the magnitude intervals of the outliers. The random errors (or residuals) are generated artificially from the normal statistical distribution, while the size of outliers is randomly selected using standard uniform distribution. Results for simulated closed leveling network reveal that data snooping can locate an outlier in the order of magnitude 5σ with high success rate. The lower the magnitude of the outliers, the lower is the efficiency of data snooping in the simulated network. In general, considering the network simulated, the data snooping procedure was more efficient for α=0.01 (1%) with 82.8% success rate.\",\"PeriodicalId\":30789,\"journal\":{\"name\":\"Geoplanning Journal of Geomatics and Planning\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.14710/geoplanning.6.1.21-30\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoplanning Journal of Geomatics and Planning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/geoplanning.6.1.21-30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoplanning Journal of Geomatics and Planning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/geoplanning.6.1.21-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在拥有快速强大的计算机、大型数据存储系统和现代软件的今天,可以通过计算机模拟来估计统计测试算法的概率分布和效率。在这里,我们使用蒙特卡罗模拟(MCS)来研究Baarda迭代数据窥探过程的测试功率和错误概率,作为高斯-马尔可夫模型中异常值识别的测试统计量。MCS放弃了使用高斯-马尔可夫模型的观测向量。事实上,要进行分析,唯一需要的就是雅可比矩阵;观测结果的不确定性;以及异常值的幅度间隔。随机误差(或残差)是由正态统计分布人工生成的,而异常值的大小是使用标准均匀分布随机选择的。模拟闭合水准网的结果表明,数据窥探可以定位5σ数量级的异常值,成功率很高。异常值的大小越低,模拟网络中的数据窥探效率就越低。一般来说,考虑到模拟的网络,对于α=0.01(1%),数据窥探过程更有效,成功率为82.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monte Carlo Simulation for Outlier Identification Studies in Geodetic Network: An Example in A Levelling Network Using Iterative Data Snooping
Today with the fast and powerful computers, large data storage systems and modern softwares, the probabilities distribution and efficiency of statistical testing algorithms can be estimated using computerized simulation. Here, we use Monte Carlo simulation (MCS) to investigate the power of the test and error probabilities of the Baarda’s iterative data snooping procedure as test statistic for outlier identification in the Gauss-Markov model. The MCS discards the use of the observation vector of Gauss-Markov model. In fact, to perform the analysis, the only needs are the Jacobian matrix; the uncertainty of the observations; and the magnitude intervals of the outliers. The random errors (or residuals) are generated artificially from the normal statistical distribution, while the size of outliers is randomly selected using standard uniform distribution. Results for simulated closed leveling network reveal that data snooping can locate an outlier in the order of magnitude 5σ with high success rate. The lower the magnitude of the outliers, the lower is the efficiency of data snooping in the simulated network. In general, considering the network simulated, the data snooping procedure was more efficient for α=0.01 (1%) with 82.8% success rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoplanning Journal of Geomatics and Planning
Geoplanning Journal of Geomatics and Planning Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
1.00
自引率
0.00%
发文量
5
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信