B-Lift曲线及其直纹曲面

IF 0.7 Q2 MATHEMATICS
Anıl Altinkaya, M. Çalişkan
{"title":"B-Lift曲线及其直纹曲面","authors":"Anıl Altinkaya, M. Çalişkan","doi":"10.31801/cfsuasmas.1074682","DOIUrl":null,"url":null,"abstract":"In this paper, we have described the B-Lift curve in Euclidean space as a curve obtained by combining the endpoints of the binormal vector of a unit speed curve. Subsequently, we have explored the Frenet frames of the B-Lift curves. Moreover, we have introduced the tangent, normal and binormal surfaces of the B-Lift curve and examined the geometric invariants of these surfaces. Finally, we have investigated the singularities of these surface and visualized the surfaces with MATLAB program.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"B-Lift curves and its ruled surfaces\",\"authors\":\"Anıl Altinkaya, M. Çalişkan\",\"doi\":\"10.31801/cfsuasmas.1074682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have described the B-Lift curve in Euclidean space as a curve obtained by combining the endpoints of the binormal vector of a unit speed curve. Subsequently, we have explored the Frenet frames of the B-Lift curves. Moreover, we have introduced the tangent, normal and binormal surfaces of the B-Lift curve and examined the geometric invariants of these surfaces. Finally, we have investigated the singularities of these surface and visualized the surfaces with MATLAB program.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1074682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1074682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将欧几里得空间中的B-Lift曲线描述为通过组合单位速度曲线的二法线向量的端点而获得的曲线。随后,我们探索了B-Lift曲线的Frenet框架。此外,我们还引入了B-Lift曲线的切线曲面、法线曲面和副法线曲面,并检验了这些曲面的几何不变量。最后,我们研究了这些曲面的奇异性,并用MATLAB程序对这些曲面进行了可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
B-Lift curves and its ruled surfaces
In this paper, we have described the B-Lift curve in Euclidean space as a curve obtained by combining the endpoints of the binormal vector of a unit speed curve. Subsequently, we have explored the Frenet frames of the B-Lift curves. Moreover, we have introduced the tangent, normal and binormal surfaces of the B-Lift curve and examined the geometric invariants of these surfaces. Finally, we have investigated the singularities of these surface and visualized the surfaces with MATLAB program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信