V. Kamp, Jean Pierre Knust, R. Moratz, Kevin Stehn, Soeren Stoehrmann
{"title":"冲突风险背景下整合和验证社会地理趋势声明的数据挖掘","authors":"V. Kamp, Jean Pierre Knust, R. Moratz, Kevin Stehn, Soeren Stoehrmann","doi":"10.5121/IJAIA.2019.10401","DOIUrl":null,"url":null,"abstract":"Data mining enables an innovative, largely automatic meta-analysis of the relationship between political and economic geography analyses of crisis regions. As an example, the two approaches Global Conflict Risk Index (GCRI) and Fragile States Index (FSI) can be related to each other. The GCRI is a quantitative conflict risk assessment based on open source data and a statistical regression method developed by the Joint Research Centre of the European Commission. The FSI is based on a conflict assessment framework developed by The Fund for Peace in Washington, DC. In contrast to the quantitative GCRI, the FSI is essentially focused on qualitative data from systematic interviews with experts. Both approaches therefore have closely related objectives, but very different methodologies and data sources. It is therefore hoped that the two complementary approaches can be combined to form an even more meaningful meta-analysis, or that contradictions can be discovered, or that a validation of the approaches can be obtained if there are similarities. We propose an approach to automatic meta-analysis that makes use of machine learning (data mining). Such a procedure represents a novel approach in the meta-analysis of conflict risk analyses.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10401","citationCount":"0","resultStr":"{\"title\":\"Data Mining for Integration and Verification of Socio-Geographical Trend Statements in the Context of Conflict Risk\",\"authors\":\"V. Kamp, Jean Pierre Knust, R. Moratz, Kevin Stehn, Soeren Stoehrmann\",\"doi\":\"10.5121/IJAIA.2019.10401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining enables an innovative, largely automatic meta-analysis of the relationship between political and economic geography analyses of crisis regions. As an example, the two approaches Global Conflict Risk Index (GCRI) and Fragile States Index (FSI) can be related to each other. The GCRI is a quantitative conflict risk assessment based on open source data and a statistical regression method developed by the Joint Research Centre of the European Commission. The FSI is based on a conflict assessment framework developed by The Fund for Peace in Washington, DC. In contrast to the quantitative GCRI, the FSI is essentially focused on qualitative data from systematic interviews with experts. Both approaches therefore have closely related objectives, but very different methodologies and data sources. It is therefore hoped that the two complementary approaches can be combined to form an even more meaningful meta-analysis, or that contradictions can be discovered, or that a validation of the approaches can be obtained if there are similarities. We propose an approach to automatic meta-analysis that makes use of machine learning (data mining). Such a procedure represents a novel approach in the meta-analysis of conflict risk analyses.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10401\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2019.10401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2019.10401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Mining for Integration and Verification of Socio-Geographical Trend Statements in the Context of Conflict Risk
Data mining enables an innovative, largely automatic meta-analysis of the relationship between political and economic geography analyses of crisis regions. As an example, the two approaches Global Conflict Risk Index (GCRI) and Fragile States Index (FSI) can be related to each other. The GCRI is a quantitative conflict risk assessment based on open source data and a statistical regression method developed by the Joint Research Centre of the European Commission. The FSI is based on a conflict assessment framework developed by The Fund for Peace in Washington, DC. In contrast to the quantitative GCRI, the FSI is essentially focused on qualitative data from systematic interviews with experts. Both approaches therefore have closely related objectives, but very different methodologies and data sources. It is therefore hoped that the two complementary approaches can be combined to form an even more meaningful meta-analysis, or that contradictions can be discovered, or that a validation of the approaches can be obtained if there are similarities. We propose an approach to automatic meta-analysis that makes use of machine learning (data mining). Such a procedure represents a novel approach in the meta-analysis of conflict risk analyses.