某些性曲线模空间的复球商结构

Pub Date : 2021-10-20 DOI:10.2969/jmsj/88318831
Zhiwei Zheng, Yiming Zhong
{"title":"某些性曲线模空间的复球商结构","authors":"Zhiwei Zheng, Yiming Zhong","doi":"10.2969/jmsj/88318831","DOIUrl":null,"url":null,"abstract":"We study moduli spaces of certain sextic curves with a singularity of multiplicity 3 from both perspectives of Deligne-Mostow theory and periods of K3 surfaces. In both ways we can describe the moduli spaces via arithmetic quotients of complex hyperbolic balls. We show in Theorem 7.4 that the two ball-quotient constructions can be unified in a geometric way.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complex ball-quotient structure of the moduli space of certain sextic curves\",\"authors\":\"Zhiwei Zheng, Yiming Zhong\",\"doi\":\"10.2969/jmsj/88318831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study moduli spaces of certain sextic curves with a singularity of multiplicity 3 from both perspectives of Deligne-Mostow theory and periods of K3 surfaces. In both ways we can describe the moduli spaces via arithmetic quotients of complex hyperbolic balls. We show in Theorem 7.4 that the two ball-quotient constructions can be unified in a geometric way.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/88318831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/88318831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从Deligne-Mostow理论和K3曲面的周期两个角度研究了奇异性为3的某些六次曲线的模空间。在这两种方法中,我们都可以通过复双曲球的算术商来描述模空间。我们在定理7.4中证明了两个球商结构可以以几何方式统一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The complex ball-quotient structure of the moduli space of certain sextic curves
We study moduli spaces of certain sextic curves with a singularity of multiplicity 3 from both perspectives of Deligne-Mostow theory and periods of K3 surfaces. In both ways we can describe the moduli spaces via arithmetic quotients of complex hyperbolic balls. We show in Theorem 7.4 that the two ball-quotient constructions can be unified in a geometric way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信