{"title":"某些性曲线模空间的复球商结构","authors":"Zhiwei Zheng, Yiming Zhong","doi":"10.2969/jmsj/88318831","DOIUrl":null,"url":null,"abstract":"We study moduli spaces of certain sextic curves with a singularity of multiplicity 3 from both perspectives of Deligne-Mostow theory and periods of K3 surfaces. In both ways we can describe the moduli spaces via arithmetic quotients of complex hyperbolic balls. We show in Theorem 7.4 that the two ball-quotient constructions can be unified in a geometric way.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complex ball-quotient structure of the moduli space of certain sextic curves\",\"authors\":\"Zhiwei Zheng, Yiming Zhong\",\"doi\":\"10.2969/jmsj/88318831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study moduli spaces of certain sextic curves with a singularity of multiplicity 3 from both perspectives of Deligne-Mostow theory and periods of K3 surfaces. In both ways we can describe the moduli spaces via arithmetic quotients of complex hyperbolic balls. We show in Theorem 7.4 that the two ball-quotient constructions can be unified in a geometric way.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/88318831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/88318831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The complex ball-quotient structure of the moduli space of certain sextic curves
We study moduli spaces of certain sextic curves with a singularity of multiplicity 3 from both perspectives of Deligne-Mostow theory and periods of K3 surfaces. In both ways we can describe the moduli spaces via arithmetic quotients of complex hyperbolic balls. We show in Theorem 7.4 that the two ball-quotient constructions can be unified in a geometric way.