凸体的大小和Holmes-Thompson内禀体积

Pub Date : 2022-06-06 DOI:10.4153/S0008439522000728
M. Meckes
{"title":"凸体的大小和Holmes-Thompson内禀体积","authors":"M. Meckes","doi":"10.4153/S0008439522000728","DOIUrl":null,"url":null,"abstract":"Abstract Magnitude is a numerical invariant of compact metric spaces, originally inspired by category theory and now known to be related to myriad other geometric quantities. Generalizing earlier results in \n$\\ell _1^n$\n and Euclidean space, we prove an upper bound for the magnitude of a convex body in a hypermetric normed space in terms of its Holmes–Thompson intrinsic volumes. As applications of this bound, we give short new proofs of Mahler’s conjecture in the case of a zonoid and Sudakov’s minoration inequality.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magnitude and Holmes–Thompson intrinsic volumes of convex bodies\",\"authors\":\"M. Meckes\",\"doi\":\"10.4153/S0008439522000728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Magnitude is a numerical invariant of compact metric spaces, originally inspired by category theory and now known to be related to myriad other geometric quantities. Generalizing earlier results in \\n$\\\\ell _1^n$\\n and Euclidean space, we prove an upper bound for the magnitude of a convex body in a hypermetric normed space in terms of its Holmes–Thompson intrinsic volumes. As applications of this bound, we give short new proofs of Mahler’s conjecture in the case of a zonoid and Sudakov’s minoration inequality.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008439522000728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

抽象量是紧致度量空间的一个数值不变量,最初受到范畴论的启发,现在已知与无数其他几何量有关。推广$\ell_1^n$和欧几里得空间中的早期结果,我们证明了超度量赋范空间中凸体的大小的上界,即其Holmes–Thompson本征体积。作为这个界的应用,我们给出了在zonoid和Sudakov的minorization不等式的情况下Mahler猜想的简短的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Magnitude and Holmes–Thompson intrinsic volumes of convex bodies
Abstract Magnitude is a numerical invariant of compact metric spaces, originally inspired by category theory and now known to be related to myriad other geometric quantities. Generalizing earlier results in $\ell _1^n$ and Euclidean space, we prove an upper bound for the magnitude of a convex body in a hypermetric normed space in terms of its Holmes–Thompson intrinsic volumes. As applications of this bound, we give short new proofs of Mahler’s conjecture in the case of a zonoid and Sudakov’s minoration inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信