有理同伦中向量束的Thom空间的权分解

IF 0.5 4区 数学
Urtzi Buijs, Federico Cantero Morán, Joana Cirici
{"title":"有理同伦中向量束的Thom空间的权分解","authors":"Urtzi Buijs,&nbsp;Federico Cantero Morán,&nbsp;Joana Cirici","doi":"10.1007/s40062-019-00243-2","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the theory of representability classes by submanifolds, we study the rational homotopy theory of Thom spaces of vector bundles. We first give a Thom isomorphism at the level of rational homotopy, extending work of Félix-Oprea-Tanré by removing hypothesis of nilpotency of the base and orientability of the bundle. Then, we use the theory of weight decompositions in rational homotopy to give a criterion of representability of classes by submanifolds, generalising results of Papadima. Along the way, we study issues of formality and give formulas for Massey products of Thom spaces. Lastly, we link the theory of weight decompositions with mixed Hodge theory and apply our results to motivic Thom spaces.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 1","pages":"1 - 26"},"PeriodicalIF":0.5000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00243-2","citationCount":"3","resultStr":"{\"title\":\"Weight decompositions of Thom spaces of vector bundles in rational homotopy\",\"authors\":\"Urtzi Buijs,&nbsp;Federico Cantero Morán,&nbsp;Joana Cirici\",\"doi\":\"10.1007/s40062-019-00243-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the theory of representability classes by submanifolds, we study the rational homotopy theory of Thom spaces of vector bundles. We first give a Thom isomorphism at the level of rational homotopy, extending work of Félix-Oprea-Tanré by removing hypothesis of nilpotency of the base and orientability of the bundle. Then, we use the theory of weight decompositions in rational homotopy to give a criterion of representability of classes by submanifolds, generalising results of Papadima. Along the way, we study issues of formality and give formulas for Massey products of Thom spaces. Lastly, we link the theory of weight decompositions with mixed Hodge theory and apply our results to motivic Thom spaces.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"15 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00243-2\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00243-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00243-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在子流形可表示类理论的启发下,研究了向量束的同伦空间的有理同伦理论。我们首先在有理同伦水平上给出了一个Thom同构,通过去掉基的幂零性和束的可定向性的假设,扩展了f - oprea - tanr的工作。然后,利用有理同伦的权分解理论,给出了类的子流形可表示性的判据,推广了Papadima的结果。在此过程中,我们研究了形式问题,并给出了Thom空间的Massey积的公式。最后,我们将权重分解理论与混合Hodge理论联系起来,并将我们的结果应用于动机Thom空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weight decompositions of Thom spaces of vector bundles in rational homotopy

Motivated by the theory of representability classes by submanifolds, we study the rational homotopy theory of Thom spaces of vector bundles. We first give a Thom isomorphism at the level of rational homotopy, extending work of Félix-Oprea-Tanré by removing hypothesis of nilpotency of the base and orientability of the bundle. Then, we use the theory of weight decompositions in rational homotopy to give a criterion of representability of classes by submanifolds, generalising results of Papadima. Along the way, we study issues of formality and give formulas for Massey products of Thom spaces. Lastly, we link the theory of weight decompositions with mixed Hodge theory and apply our results to motivic Thom spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信