浮动、固定和平滑精确点定位的比较和评估

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
P. Václavovic
{"title":"浮动、固定和平滑精确点定位的比较和评估","authors":"P. Václavovic","doi":"10.13168/agg.2020.0024","DOIUrl":null,"url":null,"abstract":"Precise Point Positioning (PPP) has been considered a powerful method for GNSS data processing. The essential input products, such as precise satellite orbits and clocks, are provided within the International GNSS Service (IGS) with a sufficient quality for estimating receiver coordinates with centimeter level accuracy. However, the IGS satellite clocks enable users to estimate ambiguities only as float values. An additional product for satellite phase biases is necessary for an integer ambiguity resolution (PPP AR). Another approach is the backward smoothing algorithm utilizing already precise and converged parameters for improving those parameters estimated at previous epochs. All the three approaches for ambiguity estimation are compared and assessed in terms of advantages and disadvantages, achieved coordinates precision, and flexibility. The comparison are performed through a processing of GNSS data from selected IGS permanent stations during 30 days in 2018, and a processing of high rate GNSS observations of the station STRF in Greece collected during the seismic event occurred on October 25, 2018. The backward smoothing improved the float solution similarly like the PPP AR, and therefore can be considered an alternative approach providing easier implementation and no dependency on additional satellites","PeriodicalId":50899,"journal":{"name":"Acta Geodynamica et Geomaterialia","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparison and assessment of float, fixed, and smoothed precise point positioning\",\"authors\":\"P. Václavovic\",\"doi\":\"10.13168/agg.2020.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise Point Positioning (PPP) has been considered a powerful method for GNSS data processing. The essential input products, such as precise satellite orbits and clocks, are provided within the International GNSS Service (IGS) with a sufficient quality for estimating receiver coordinates with centimeter level accuracy. However, the IGS satellite clocks enable users to estimate ambiguities only as float values. An additional product for satellite phase biases is necessary for an integer ambiguity resolution (PPP AR). Another approach is the backward smoothing algorithm utilizing already precise and converged parameters for improving those parameters estimated at previous epochs. All the three approaches for ambiguity estimation are compared and assessed in terms of advantages and disadvantages, achieved coordinates precision, and flexibility. The comparison are performed through a processing of GNSS data from selected IGS permanent stations during 30 days in 2018, and a processing of high rate GNSS observations of the station STRF in Greece collected during the seismic event occurred on October 25, 2018. The backward smoothing improved the float solution similarly like the PPP AR, and therefore can be considered an alternative approach providing easier implementation and no dependency on additional satellites\",\"PeriodicalId\":50899,\"journal\":{\"name\":\"Acta Geodynamica et Geomaterialia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodynamica et Geomaterialia\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.13168/agg.2020.0024\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodynamica et Geomaterialia","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.13168/agg.2020.0024","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 6

摘要

精确点定位(PPP)被认为是GNSS数据处理的一种强大方法。重要的输入产品,如精确的卫星轨道和时钟,在国际全球导航卫星系统服务(IGS)内提供,具有足够的质量,可以以厘米级的精度估计接收器坐标。然而,IGS卫星时钟使用户只能将模糊度估计为浮点值。卫星相位偏差的附加乘积对于整数模糊度分辨率(PPP AR)是必要的。另一种方法是利用已经精确和收敛的参数来改进在先前时期估计的那些参数的后向平滑算法。对三种模糊度估计方法的优缺点、坐标精度和灵活性进行了比较和评估。通过处理2018年30天内选定IGS永久站的GNSS数据,以及处理2018年10月25日地震事件期间收集的希腊STRF站的高速率GNSS观测结果,进行了比较。后向平滑改进了浮动解决方案,类似于PPP AR,因此可以被视为一种更容易实现且不依赖于额外卫星的替代方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison and assessment of float, fixed, and smoothed precise point positioning
Precise Point Positioning (PPP) has been considered a powerful method for GNSS data processing. The essential input products, such as precise satellite orbits and clocks, are provided within the International GNSS Service (IGS) with a sufficient quality for estimating receiver coordinates with centimeter level accuracy. However, the IGS satellite clocks enable users to estimate ambiguities only as float values. An additional product for satellite phase biases is necessary for an integer ambiguity resolution (PPP AR). Another approach is the backward smoothing algorithm utilizing already precise and converged parameters for improving those parameters estimated at previous epochs. All the three approaches for ambiguity estimation are compared and assessed in terms of advantages and disadvantages, achieved coordinates precision, and flexibility. The comparison are performed through a processing of GNSS data from selected IGS permanent stations during 30 days in 2018, and a processing of high rate GNSS observations of the station STRF in Greece collected during the seismic event occurred on October 25, 2018. The backward smoothing improved the float solution similarly like the PPP AR, and therefore can be considered an alternative approach providing easier implementation and no dependency on additional satellites
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geodynamica et Geomaterialia
Acta Geodynamica et Geomaterialia 地学-地球化学与地球物理
CiteScore
2.30
自引率
0.00%
发文量
12
期刊介绍: Acta geodynamica et geomaterialia (AGG) has been published by the Institute of Rock Structures and Mechanics, Czech Academy of Sciences since 2004, formerly known as Acta Montana published from the beginning of sixties till 2003. Approximately 40 articles per year in four issues are published, covering observations related to central Europe and new theoretical developments and interpretations in these disciplines. It is possible to publish occasionally research articles from other regions of the world, only if they present substantial advance in methodological or theoretical development with worldwide impact. The Board of Editors is international in representation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信