Muhammad Imran, Muhammad Imran Shahzad, M. Akbar, Saeed Ahmed, Sania Shaheen, Muhammad Ahmad Raza Pakistan
{"title":"分数空间中导电球和介电球的数学分析","authors":"Muhammad Imran, Muhammad Imran Shahzad, M. Akbar, Saeed Ahmed, Sania Shaheen, Muhammad Ahmad Raza Pakistan","doi":"10.53560/ppasa(59-4)667","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical analysis of a sphere placed in fractional dimensional space. The Laplacian Equation in fractional space describes physics as a complex phenomenon. The general solution of the Laplacian equation in fractional space is obtained by the separable variable technique. We have investigated a close form solution for conducting sphere and dielectric sphere. Further, the electric potential and charge density, induced due to a point charge is calculated in fractional space, and also the energy radiated by the sphere is determined. The results are compared with the classical results by setting the fractional parameter α = 3 which normally lies in the limit 2 < α ≤ 3.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Analysis of Conducting and Dielectric Sphere in Fractional Space\",\"authors\":\"Muhammad Imran, Muhammad Imran Shahzad, M. Akbar, Saeed Ahmed, Sania Shaheen, Muhammad Ahmad Raza Pakistan\",\"doi\":\"10.53560/ppasa(59-4)667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analytical analysis of a sphere placed in fractional dimensional space. The Laplacian Equation in fractional space describes physics as a complex phenomenon. The general solution of the Laplacian equation in fractional space is obtained by the separable variable technique. We have investigated a close form solution for conducting sphere and dielectric sphere. Further, the electric potential and charge density, induced due to a point charge is calculated in fractional space, and also the energy radiated by the sphere is determined. The results are compared with the classical results by setting the fractional parameter α = 3 which normally lies in the limit 2 < α ≤ 3.\",\"PeriodicalId\":36961,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(59-4)667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(59-4)667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Mathematical Analysis of Conducting and Dielectric Sphere in Fractional Space
This paper presents an analytical analysis of a sphere placed in fractional dimensional space. The Laplacian Equation in fractional space describes physics as a complex phenomenon. The general solution of the Laplacian equation in fractional space is obtained by the separable variable technique. We have investigated a close form solution for conducting sphere and dielectric sphere. Further, the electric potential and charge density, induced due to a point charge is calculated in fractional space, and also the energy radiated by the sphere is determined. The results are compared with the classical results by setting the fractional parameter α = 3 which normally lies in the limit 2 < α ≤ 3.