分数空间中导电球和介电球的数学分析

Q4 Physics and Astronomy
Muhammad Imran, Muhammad Imran Shahzad, M. Akbar, Saeed Ahmed, Sania Shaheen, Muhammad Ahmad Raza Pakistan
{"title":"分数空间中导电球和介电球的数学分析","authors":"Muhammad Imran, Muhammad Imran Shahzad, M. Akbar, Saeed Ahmed, Sania Shaheen, Muhammad Ahmad Raza Pakistan","doi":"10.53560/ppasa(59-4)667","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical analysis of a sphere placed in fractional dimensional space. The Laplacian Equation in fractional space describes physics as a complex phenomenon. The general solution of the Laplacian equation in fractional space is obtained by the separable variable technique. We have investigated a close form solution for conducting sphere and dielectric sphere. Further, the electric potential and charge density, induced due to a point charge is calculated in fractional space, and also the energy radiated by the sphere is determined. The results are compared with the classical results by setting the fractional parameter α = 3 which normally lies in the limit 2 < α ≤ 3.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Analysis of Conducting and Dielectric Sphere in Fractional Space\",\"authors\":\"Muhammad Imran, Muhammad Imran Shahzad, M. Akbar, Saeed Ahmed, Sania Shaheen, Muhammad Ahmad Raza Pakistan\",\"doi\":\"10.53560/ppasa(59-4)667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analytical analysis of a sphere placed in fractional dimensional space. The Laplacian Equation in fractional space describes physics as a complex phenomenon. The general solution of the Laplacian equation in fractional space is obtained by the separable variable technique. We have investigated a close form solution for conducting sphere and dielectric sphere. Further, the electric potential and charge density, induced due to a point charge is calculated in fractional space, and also the energy radiated by the sphere is determined. The results are compared with the classical results by setting the fractional parameter α = 3 which normally lies in the limit 2 < α ≤ 3.\",\"PeriodicalId\":36961,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(59-4)667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(59-4)667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了分数维空间中球面的解析分析。分数空间中的拉普拉斯方程将物理描述为一种复杂的现象。利用可分变量技术,得到了分数阶空间拉普拉斯方程的通解。我们研究了导电球和介电球的近似解。此外,在分数空间中计算了由点电荷引起的电势和电荷密度,并确定了球体辐射的能量。设置分数形参数α = 3,通常在极限2 < α≤3时,将所得结果与经典结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Analysis of Conducting and Dielectric Sphere in Fractional Space
This paper presents an analytical analysis of a sphere placed in fractional dimensional space. The Laplacian Equation in fractional space describes physics as a complex phenomenon. The general solution of the Laplacian equation in fractional space is obtained by the separable variable technique. We have investigated a close form solution for conducting sphere and dielectric sphere. Further, the electric potential and charge density, induced due to a point charge is calculated in fractional space, and also the energy radiated by the sphere is determined. The results are compared with the classical results by setting the fractional parameter α = 3 which normally lies in the limit 2 < α ≤ 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Pakistan Academy of Sciences: Part A
Proceedings of the Pakistan Academy of Sciences: Part A Computer Science-Computer Science (all)
CiteScore
0.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信