{"title":"已灭绝鸟类腿骨的血流速度表明其粗略运动水平很高","authors":"Qiaohui Hu, C. V. Miller, E. Snelling, R. Seymour","doi":"10.1017/pab.2023.14","DOIUrl":null,"url":null,"abstract":"Abstract Foramina of bones are beginning to yield more information about metabolic rates and activity levels of living and extinct species. This study investigates the relationship between estimated blood flow rate to the femur and body mass among cursorial birds extending back to the Late Cretaceous. Data from fossil foramina are compared with those of extant species, revealing similar scaling relationships for all cursorial birds and supporting crown bird–like terrestrial locomotor activity. Because the perfusion rate in long bones of birds is related to the metabolic cost of microfracture repair due to stresses applied during locomotion, as it is in mammals, this study estimates absolute blood flow rates from sizes of nutrient foramina located on the femur shafts. After differences in body mass and locomotor behaviors are accounted for, femoral bone blood flow rates in extinct species are similar to those of extant cursorial birds. Femoral robustness is generally greater in aquatic flightless birds than in terrestrial flightless and ground-dwelling flighted birds, suggesting that the morphology is shaped by life-history demands. Femoral robustness also increases in larger cursorial bird taxa, probably associated with their weight redistribution following evolutionary loss of the tail, which purportedly constrains femur length, aligns it more horizontally, and necessitates increased robustness in larger species.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"49 1","pages":"700 - 711"},"PeriodicalIF":2.6000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blood flow rates to leg bones of extinct birds indicate high levels of cursorial locomotion\",\"authors\":\"Qiaohui Hu, C. V. Miller, E. Snelling, R. Seymour\",\"doi\":\"10.1017/pab.2023.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Foramina of bones are beginning to yield more information about metabolic rates and activity levels of living and extinct species. This study investigates the relationship between estimated blood flow rate to the femur and body mass among cursorial birds extending back to the Late Cretaceous. Data from fossil foramina are compared with those of extant species, revealing similar scaling relationships for all cursorial birds and supporting crown bird–like terrestrial locomotor activity. Because the perfusion rate in long bones of birds is related to the metabolic cost of microfracture repair due to stresses applied during locomotion, as it is in mammals, this study estimates absolute blood flow rates from sizes of nutrient foramina located on the femur shafts. After differences in body mass and locomotor behaviors are accounted for, femoral bone blood flow rates in extinct species are similar to those of extant cursorial birds. Femoral robustness is generally greater in aquatic flightless birds than in terrestrial flightless and ground-dwelling flighted birds, suggesting that the morphology is shaped by life-history demands. Femoral robustness also increases in larger cursorial bird taxa, probably associated with their weight redistribution following evolutionary loss of the tail, which purportedly constrains femur length, aligns it more horizontally, and necessitates increased robustness in larger species.\",\"PeriodicalId\":54646,\"journal\":{\"name\":\"Paleobiology\",\"volume\":\"49 1\",\"pages\":\"700 - 711\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/pab.2023.14\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2023.14","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Blood flow rates to leg bones of extinct birds indicate high levels of cursorial locomotion
Abstract Foramina of bones are beginning to yield more information about metabolic rates and activity levels of living and extinct species. This study investigates the relationship between estimated blood flow rate to the femur and body mass among cursorial birds extending back to the Late Cretaceous. Data from fossil foramina are compared with those of extant species, revealing similar scaling relationships for all cursorial birds and supporting crown bird–like terrestrial locomotor activity. Because the perfusion rate in long bones of birds is related to the metabolic cost of microfracture repair due to stresses applied during locomotion, as it is in mammals, this study estimates absolute blood flow rates from sizes of nutrient foramina located on the femur shafts. After differences in body mass and locomotor behaviors are accounted for, femoral bone blood flow rates in extinct species are similar to those of extant cursorial birds. Femoral robustness is generally greater in aquatic flightless birds than in terrestrial flightless and ground-dwelling flighted birds, suggesting that the morphology is shaped by life-history demands. Femoral robustness also increases in larger cursorial bird taxa, probably associated with their weight redistribution following evolutionary loss of the tail, which purportedly constrains femur length, aligns it more horizontally, and necessitates increased robustness in larger species.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.