{"title":"系外行星的直接成像:遗产和前景","authors":"G. Chauvin","doi":"10.5802/crphys.139","DOIUrl":null,"url":null,"abstract":". Understanding how giant and terrestrial planets form and evolve, what is their internal structure and that of their atmosphere, represents one of the major challenges of modern astronomy, which is directly connected to the ultimate search for life at the horizon 2030–2050. However, several astrophysical (under-standing of the formation and physics of giant and terrestrial exoplanets), biological (identification of the best biomarkers) and technological (technical innovations for the new generations of telescopes and instruments) obstacles must be overcome. From the astrophysical point of view, it is indeed crucial to understand the mechanisms of formation and evolution of giant planets, including planet and disk interactions, which will completely sculpt the planetary architectures and thus dominate the formation of terrestrial planets, es-pecially in regions around the host star capable of supporting life. It is also important to develop dedicated instrumentation and techniques to study in their totality the population of giant and terrestrial planets, but also to reveal in the near future the first biological markers of life in the atmospheres of terrestrial planets. In that perspective, direct imaging from ground-based observatories or in space is playing a central role in concert with other observing techniques. In this paper, I will briefly review the genesis of this observing tech-nique,themaininstrumentalinnovationandchallenges,stellartargetsandsurveys,tothenpresentthemain resultsobtainedsofaraboutthephysicsandthemechanismsofformationandevolutionofyounggiantplan-ets and planetary system architectures. I will then present the exciting perspectives o ff ered by the upcoming","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direct imaging of exoplanets: Legacy and prospects\",\"authors\":\"G. Chauvin\",\"doi\":\"10.5802/crphys.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Understanding how giant and terrestrial planets form and evolve, what is their internal structure and that of their atmosphere, represents one of the major challenges of modern astronomy, which is directly connected to the ultimate search for life at the horizon 2030–2050. However, several astrophysical (under-standing of the formation and physics of giant and terrestrial exoplanets), biological (identification of the best biomarkers) and technological (technical innovations for the new generations of telescopes and instruments) obstacles must be overcome. From the astrophysical point of view, it is indeed crucial to understand the mechanisms of formation and evolution of giant planets, including planet and disk interactions, which will completely sculpt the planetary architectures and thus dominate the formation of terrestrial planets, es-pecially in regions around the host star capable of supporting life. It is also important to develop dedicated instrumentation and techniques to study in their totality the population of giant and terrestrial planets, but also to reveal in the near future the first biological markers of life in the atmospheres of terrestrial planets. In that perspective, direct imaging from ground-based observatories or in space is playing a central role in concert with other observing techniques. In this paper, I will briefly review the genesis of this observing tech-nique,themaininstrumentalinnovationandchallenges,stellartargetsandsurveys,tothenpresentthemain resultsobtainedsofaraboutthephysicsandthemechanismsofformationandevolutionofyounggiantplan-ets and planetary system architectures. I will then present the exciting perspectives o ff ered by the upcoming\",\"PeriodicalId\":50650,\"journal\":{\"name\":\"Comptes Rendus Physique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Physique\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5802/crphys.139\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.139","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Direct imaging of exoplanets: Legacy and prospects
. Understanding how giant and terrestrial planets form and evolve, what is their internal structure and that of their atmosphere, represents one of the major challenges of modern astronomy, which is directly connected to the ultimate search for life at the horizon 2030–2050. However, several astrophysical (under-standing of the formation and physics of giant and terrestrial exoplanets), biological (identification of the best biomarkers) and technological (technical innovations for the new generations of telescopes and instruments) obstacles must be overcome. From the astrophysical point of view, it is indeed crucial to understand the mechanisms of formation and evolution of giant planets, including planet and disk interactions, which will completely sculpt the planetary architectures and thus dominate the formation of terrestrial planets, es-pecially in regions around the host star capable of supporting life. It is also important to develop dedicated instrumentation and techniques to study in their totality the population of giant and terrestrial planets, but also to reveal in the near future the first biological markers of life in the atmospheres of terrestrial planets. In that perspective, direct imaging from ground-based observatories or in space is playing a central role in concert with other observing techniques. In this paper, I will briefly review the genesis of this observing tech-nique,themaininstrumentalinnovationandchallenges,stellartargetsandsurveys,tothenpresentthemain resultsobtainedsofaraboutthephysicsandthemechanismsofformationandevolutionofyounggiantplan-ets and planetary system architectures. I will then present the exciting perspectives o ff ered by the upcoming
期刊介绍:
The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences.
Its objective is to enable researchers to quickly share their work with the international scientific community.
The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity.
From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication.
The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.